Word Similarity via Symmetric Patterns

Roy Schwartz, NLP Lab, The Hebrew University

IBM ML Seminar, September 2015 Joint work with Roi Reichart and Ari Rappoport

Apples and Oranges

juicy

round

Apples and Oranges

juicy

round

Apples and Oranges

juicy

round

Symmetric Patterns

Overview

- Word Similarity
 - Main Approaches
 - Limitations of existing approaches
- Symmetric Patterns
 - Automatically acquired Symmetric Patterns
 - Word Similarity via Symmetric Patterns
- First order Symmetric Patterns
 - Schwartz, Reichart and Rappoport, Coling 2014
- Second + Third order Symmetric Patterns
 - Schwartz, Reichart and Rappoport, CoNLL 2015

Word Similarity

- Whether two words are **semantically** similar
 - cats are similar to dogs

Word Similarity

- Whether two words are **semantically** similar
 - cats are similar to dogs
- Definition is not entirely clear
 - Synonyms (i.e., share the same meaning)
 - Co-hyponyms (i.e., belong to the same category)

Word Similarity

- Whether two words are **semantically** similar
 - cats are similar to dogs
- Definition is not entirely clear
 - Synonyms (i.e., share the same meaning)
 - Co-hyponyms (i.e., belong to the same category)
- Human judgment evaluation

Vector Space Models DS Hypothesis (Harris, 1954)

- ... tokens to date, friend lists and recent ...
- ... by my dear **friend** and companion, Fritz von ...
- ... even have a **friend** who never fails ...
- ... by my worthy **friend** Doctor Haygarth of ...
- ... and as a **friend** pointed out to ...
- ... partner, in-laws, relatives or **friends** speak a different ...
- ... petition to a **friend** Go to the ...
- ... otherwise, to a **friend** or family member ...
- ...images from my **friend** Rory though ...
- ... great, and a **friend** as well as a colleague, who, ...

•••

Examples taken from the ukwac corpus (Baroni et al., 2009)

Vector Space Models DS Hypothesis (Harris, 1954)

... tokens to date, friend lists and recent ...

- ... by my dear **friend** and companion, Fritz von ...
- ... even have a **friend** who never fails ...
- ... by my worthy **friend** Doctor Haygarth of ...
- ... and as a **friend** pointed out to ...
- ... partner, in-laws, relatives or friends speak a different ...

... petition to a **friend** Go to the ...

... otherwise, to a **friend** or family member ...

... images from my **friend** Rory though - ...

... great, and a friend as well as a colleague, who, ...

Examples taken from the ukwac corpus (Baroni et al., 2009)

...

Vector Space Models

Vector Space Models

Vector Space Models Baroni et al., 2014

- Count-based approaches
 - 'France' = { 'Paris': 125, 'Baguette': 18, 'françois hollande': 99, ... }
 - Many improvements: weighting schemes (e.g., PPMI), dimensionality reduction (SVD, PCA, etc.)

Vector Space Models Baroni et al., 2014

- Count-based approaches
 - 'France' = { 'Paris': 125, 'Baguette': 18, 'françois hollande': 99, ... }
 - Many improvements: weighting schemes (e.g., PPMI), dimensionality reduction (SVD, PCA, etc.)
- Predict-based models
 - Often referred to as "word embeddings"
 - Embeddings are learnt as a by-product of a different task (most commonly a language model)
 - word2vec skip-gram (Mikolov et al., 2013)

$$\max \sum_{t=1}^{T} \sum_{-c \le j \le c, j \ne 0} \log p(w_{t+j}|w_t)$$

Similarity or Relatedness? Hill et al., 2014

Similarity or Relatedness? Hill et al., 2014

cookie

cup

coffee

tea

hot_water

Similarity or **Dis**similarity?

tall short

Similarity or **Dis**similarity?

Current Vector Space Models do not Capture (pure) Word Similarity

Symmetric Patterns Contexts

Davidov and Rappoport, 2006

neither X nor Y

X as well as Y

Symmetric Patterns Contexts

Davidov and Rappoport, 2006

bright and shiny shiny and bright

Symmetric Patterns (SPs)

- Words that co-occur in SPs tend to be semantically similar
 - Widdows and Dorow, 2002
 - Davidov and Rappoport, 2006
 - Kozareva et al., 2008
 - Feng et al., 2013

Symmetric Patterns (SPs)

- Words that co-occur in SPs tend to be semantically similar
 - Widdows and Dorow, 2002
 - Davidov and Rappoport, 2006
 - Kozareva et al., 2008
 - Feng et al., 2013

neither here nor there

John and Mike

bold and beautiful

Paris or Rome

Symmetric Patterns (SPs)

- Words that co-occur in SPs tend to be semantically similar
 - Widdows and Dorow, 2002
 - Davidov and Rappoport, 2006
 - Kozareva et al., 2008
 - Feng et al., 2013

neither here nor there	#car or wheel	John and Mike
#neither cup nor coffee	bold and beautiful	Paris or Rome
	#dog and leash	

Manually Defined SPs

neither X nor Y

X as well as Y

Manually Defined SPs

X or Y

neither X nor Y

X as well as Y

Automatically Extracted Symmetric Patterns

The (Davidov and Rappoport, 2006) algorithm

- A graph-based algorithm
 - Input: a corpus of plain text
 - Output: a set of SPs

Automatically Extracted Symmetric Patterns

The (Davidov and Rappoport, 2006) algorithm

- A graph-based algorithm
 - Input: a corpus of **plain text**
 - Output: a set of SPs
- The idea: search for patterns with **interchangeable** word pairs
 - For each pattern candidate, compute symmetry measure (M)
 - Select the patterns with the highest M values

Automatically Extracted Symmetric Patterns

The (Davidov and Rappoport, 2006) algorithm

- A graph-based algorithm
 - Input: a corpus of plain text
 - Output: a set of SPs
- The idea: search for patterns with **interchangeable** word pairs
 - For each pattern candidate, compute symmetry measure (M)
 - Select the patterns with the highest M values
- The M measure computes, for each pattern p (e.g., "X and Y"), the proportion of instances of p that occur in both directions ("cat and dog" + "dog and cat")
 - − High M value → A symmetric pattern

DR06 Example X and Y

DR06 Example X and Y

So Far

• Vector space models face an inherent challenge when used to tackle the task of word **similarity**

So Far

- Vector space models face an inherent challenge when used to tackle the task of word **similarity**
- Symmetric Patterns (SP) are useful for representing word similarity

So Far

- Vector space models face an inherent challenge when used to tackle the task of word **similarity**
- Symmetric Patterns (SP) are useful for representing word similarity
- The set of patterns can be extracted automatically from plain text

Minimally Supervised Classification to Semantic Categories using Automatically Acquired Symmetric Patterns Schwartz, Reichart and Rappoport, Coling 2014

The Task

- Binary Classification of Nouns into Semantic Categories
 - Is "dog" an animal?
 - Is "couch" a tool?
- Use minimal supervision

The Task Example

• Animals

The Task Goal

• Animals

Symmetric Patterns to Word Similarity

• Input: a large corpus C

Symmetric Patterns to Word Similarity

- Input: a large corpus C
- Extract a set of SPs *P* using the DR06 algorithm

Symmetric Patterns to Word Similarity

- Input: a large corpus C
- Extract a set of SPs *P* using the DR06 algorithm
- Traverse C, extract all instances of all p in P
 - cats and dogs

...

- House and the rooms
- from France to England

Word Similarity via Symmetric Patterns @ Roy Schwartz

• $S_{XY} \rightarrow$ the number of times X,Y appeared in the same symmetric pattern

- S_{XY} → the number of times X,Y appeared in the same symmetric pattern
- orange $\leftarrow \rightarrow$ apple

...

- 1. ... apples and oranges ...
- 2. ... oranges as well as apples ...
- K. ... neither apple nor orange ...

→ orange ← → apple =
$$\frac{K}{Z}$$

- Z: a normalization factor

- $S_{xy} \rightarrow$ the number of times X,Y appeared in the same symmetric pattern
- orange $\leftarrow \rightarrow$ apple

. . .

- 1. ... apples and oranges ...
- 2.
- K. ... neither apple nor orange ... M. ... England and France ...

→ orange ← → apple =
$$\frac{K}{Z}$$

- Z: a normalization factor

• France $\leftarrow \rightarrow$ England

...

- 1. ... England or France ...
- ... oranges as well as apples ... 2. ... from France to England ...

→ France ← → England =
$$\frac{M}{Z}$$

Word Similarity Measures $S_{XY} \rightarrow$ Similarity Between Words X and Y

- Symmetric patterns
 - Extract a set of symmetric patterns from plain text
 - − S_{XY} → the number of time X and Y participate in the same symmetric pattern

Word Similarity Measures $S_{XY} \rightarrow$ Similarity Between Words X and Y

- Symmetric patterns
 - Extract a set of symmetric patterns from plain text
 - $S_{XY} \rightarrow$ the number of time X and Y participate in the same symmetric pattern
- Baselines:

Senna word embeddings (Collobert et al., 2011):

- $S_{XY} \rightarrow$ cosine similarity between the word embeddings of X and Y
- **Brown** Clusters (Brown et al., 1992):

 $\rm S_{XY} \rightarrow 1$ - tree distance between X and Y clusters

Label Propagation Algorithms

• Iterative variant of k-Nearest Neighbors

- Baselines
 - Normalized graph cut algorithm (Yu and Shi, 2003)
 - Modified Adsorption (MAD) algorithm (Talukdar and Crammer, 2009)

Experimental Setup Experiments

- A subset of the CSLB property norms dataset (Devereux et al., 2013)
 - 450 concrete nouns
 - Thirty human annotators assigned each noun with semantic categories
 - animals, tools, food, clothes
- Symmetric pattern based scores computed using the google books n-gram corpus
- Number of labeled seed words

- 4, 10, 20, 40

Results Word Similarity Measures

Results Word Similarity Measures

best **symmetric patterns** model >> any other model 12.5% accuracy, 0.13 F1 points difference

More Results

- When using as few as four labeled seed words
 - Accuracy results are 82-94%
 - F1 scores are 0.64-0.86
- Symmetric patterns are superior compared to the other word similarity measures across
 - semantic categories
 - label propagation algorithms
 - labeled seed set sizes
 - evaluation measures

Second Order Symmetric Patterns

Symmetric Pattern Based Word Embeddings for Improved Word Similarity Prediction Schwartz, Reichart and Rappoport, CoNLL 2015

The goal:

A vector space model based on symmetric pattern contexts

Second Order Symmetric Patterns

 For each word w in the lexicon, build a count vector (V_w) of all other words that co-occur with w in SPs

Second Order Symmetric Patterns

• For each word *w* in the lexicon, build a count vector (V_w) of all other words that co-occur with *w* in SPs

orange

. . .

- 1. ... apples and oranges ...
- 2. ... oranges as well as grapes
- K. ... neither banana nor orange

- China
 - 1. ... Japan or China ...
 - 2. ... China rather than Korea
 - M. ... Vietnam and China ...

Second Order Symmetric Patterns (2)

 Compute the Positive Pointwise Mutual Information (PPMI) between each pair of words

$$PMI(w_i, w_j) = \log\left(\frac{p(w_i, w_j)}{p(w_i)p(w_j)}\right)$$

$$PPMI(w_i, w_j) = \begin{cases} PMI(w_i, w_j) < 0:0\\ otherwise: PMI(w_i, w_j) \end{cases}$$

The Result: Word Embeddings based on **Second-order** Symmetric Patterns

PPMI(dog,house) PPMI(dog,mouse) PPMI(dog,zebra) PPMI(dog,wine) PPMI(dog,cat) PPMI(dog,dolphin) PPMI(dog,bottle) PPMI(dog,pen)

The Result: Word Embeddings based on **Second-order** Symmetric Patterns

PPMI(dog,house) PPMI(dog,mouse) PPMI(dog,zebra) PPMI(dog,wine) PPMI(dog,cat) PPMI(dog,dolphin) PPMI(dog,bottle) PPMI(dog,pen)

/sp

$$|V^{SP}_{W}| = -200K$$

 $E_w(|nonzero(V^{SP}_w)|) = \sim 50$

The Result: Word Embeddings based on **Second-order** Symmetric Patterns

PPMI(dog,house) PPMI(dog,mouse) PPMI(dog,zebra) PPMI(dog,wine) PPMI(dog,cat) PPMI(dog,dolphin) PPMI(dog,bottle) PPMI(dog,pen)

/sp

similarity rather than relatedness

$$|V^{SP}_w| = \sim 200K$$

 $E_w(|nonzero(V^{SP}_w)|) = \sim 50$

big / small

big / small

- Antonyms occur in similar contexts
 - Here is a X car
 - I live in a X house

big / small

- Antonyms occur in similar contexts
 - Here is a X car
 - I live in a X house

 \rightarrow In typical word embeddings, $\cos(V_{big}, V_{small})$ is high

big / small

Some symmetric patterns are indicative of antonymy* *"either* X *or* Y" (*either* big *or* small), *"from* X *to* Y" (*from* poverty *to* richness)

* Lin et al. (2003)

• A variant of our model that assigns dissimilar vectors to antonym pairs

• A variant of our model that assigns dissimilar vectors to antonym pairs

For each word *w*, compute V_w^{AP} similarly to V_w^{SP} , but using the set of antonym patterns

$$V_{w}^{\rm AP'} = V_{w}^{\rm SP} - \beta \cdot V_{w}^{\rm AP}$$

\clubsuit β is tuned using a development set

Experiments

- Word similarity task
 - Experiments with the SimLex999 dataset (Hill et al., 2014)
 - 999 word pairs, each assigned a similarity score by human annotators
 - $f_{<\text{model}>}(w_i, w_j) = \cos(V^{<\text{model}>}_{wi}, V^{<\text{model}>}_{wj})$
 - Evaluation results is the Spearman's ρ score between model and human judgments
 - Numbers are average scores of 10 folds of 25% (dev) / 75% (test) partitions
 - Baselines: 6 state-of-the-art models

Experiments

- Word similarity task
 - Experiments with the SimLex999 dataset (Hill et al., 2014)
 - 999 word pairs, each assigned a similarity score by human annotators
 - $f_{<\text{model}>}(w_i, w_j) = \cos(V^{<\text{model}>}_{wi}, V^{<\text{model}>}_{wj})$
 - Evaluation results is the Spearman's ρ score between model and human judgments
 - Numbers are average scores of 10 folds of 25% (dev) / 75% (test) partitions
 - Baselines: 6 state-of-the-art models

Model	Spearman's p
Glove (Pennington et al., 2014)	0.35
PPMI-Bag-of-words	0.423
word2vec CBOW (Mikolov et al,. 2013)	0.43
Dep (Levy and Goldberg, 2014)	0.436
NNSE (Murphy et al., 2012)	0.455
word2vec skip-gram (Mikolov et al,. 2013)	0.462
2 nd -order SP ⁽⁺⁾	0.449
Third Order Symmetric Patterns

• For each word w, V^N_w denotes the vectors for the top N firstorder SP neighboring words with w

$$V_{w}^{\mathrm{SP'}} = V_{w}^{\mathrm{SP}} + \alpha \sum_{v \in V_{w}^{N}} v$$

• Using N=50: $E_w(|nonzero(V^{SP'}_w)|) = ~8K$

 $\boldsymbol{\diamond}$ $\boldsymbol{\alpha}$ and *N* are tuned using a development set

Third Order SP results

Model	Spearman's ρ
Glove (Pennington et al., 2014)	0.35
PPMI-Bag-of-words	0.423
word2vec CBOW (Mikolov et al,. 2013)	0.43
Dep (Levy and Goldberg, 2014)	0.436
NNSE (Murphy et al., 2012)	0.455
word2vec skip-gram (Mikolov et al,. 2013)	0.462
3 rd -order SP ⁽⁻⁾	0.434
2 nd -order SP ⁽⁺⁾	0.449
3 rd -order SP ⁽⁺⁾	0.517

Joint Model

 $f_{joint}(w_{i}, w_{j}) = \gamma \cdot f_{SP}(w_{i}, w_{j}) + (1 - \gamma) \cdot f_{skip-gram}(w_{i}, w_{j})$

Model	Spearman's p
Glove (Pennington et al., 2014)	0.35
PPMI-Bag-of-words	0.423
word2vec CBOW (Mikolov et al,. 2013)	0.43
Dep (Levy and Goldberg, 2014)	0.436
NNSE (Murphy et al., 2012)	0.455
word2vec skip-gram (Mikolov et al,. 2013)	0.462
3 rd -order SP ⁽⁻⁾	0.434
2 nd -order SP ⁽⁺⁾	0.449
3 rd -order SP ⁽⁺⁾	0.517
Joint (3 rd -order SP ⁽⁺⁾ , skip-gram)	0.563
Average Human Score	0.651

 $\diamond \gamma$ determined using a development set

<u>Model</u>	<u>Adj.</u>
Glove (Pennington et al., 2014)	0.571
PPMI-Bag-of-words	0.548
word2vec CBOW (Mikolov et al,. 2013)	0.579
Dep (Levy and Goldberg, 2014)	0.54
NNSE (Murphy et al., 2012)	0.594
word2vec skip-gram (Mikolov et al,. 2013)	0.604
3 rd -order SP ⁽⁺⁾	0.663

<u>Model</u>	<u>Adj.</u>	<u>Nouns</u>
Glove (Pennington et al., 2014)	0.571	0.377
PPMI-Bag-of-words	0.548	0.451
word2vec CBOW (Mikolov et al,. 2013)	0.579	0.48
Dep (Levy and Goldberg, 2014)	0.54	0.449
NNSE (Murphy et al., 2012)	0.594	0.487
word2vec skip-gram (Mikolov et al,. 2013)	0.604	0.501
3 rd -order SP ⁽⁺⁾	0.663	0.497

<u>Model</u>	<u>Adj.</u>	<u>Nouns</u>	<u>Verbs</u>
Glove (Pennington et al., 2014)	0.571	0.377	0.163
PPMI-Bag-of-words	0.548	0.451	0.276
word2vec CBOW (Mikolov et al,. 2013)	0.579	0.48	0.252
Dep (Levy and Goldberg, 2014)	0.54	0.449	0.376
NNSE (Murphy et al., 2012)	0.594	0.487	0.318
word2vec skip-gram (Mikolov et al,. 2013)	0.604	0.501	0.307
3 rd -order SP ⁽⁺⁾	0.663	0.497	0.578

<u>Model</u>	<u>Adj.</u>	<u>Nouns</u>	<u>Verbs</u>
Glove (Pennington et al., 2014)	0.571	0.377	0.163
PPMI-Bag-of-words	0.548	0.451	0.276
word2vec CBOW (Mikolov et al,. 2013)	0.579	0.48	0.252
Dep (Levy and Goldberg, 2014)	0.54	0.449	0.376
NNSE (Murphy et al., 2012)	0.594	0.487	0.318
word2vec skip-gram (Mikolov et al,. 2013)	0.604	0.501	0.307
3 rd -order SP ⁽⁺⁾	0.663	0.497	0.578

<u>Model</u>	<u>Adj.</u>	<u>Nouns</u>	<u>Verbs</u>
Glove (Pennington et al., 2014)	0.571	0.377	0.163
PPMI-Bag-of-words	0.548	0.451	0.276
word2vec CBOW (Mikolov et al,. 2013)	0.579	0.48	0.252
Dep (Levy and Goldberg, 2014)	0.54	0.449	0.376
NNSE (Murphy et al., 2012)	0.594	0.487	0.318
word2vec skip-gram (Mikolov et al,. 2013)	0.604	0.501	0.307
3 rd -order SP ⁽⁺⁾	0.663	0.497	0.578

<u>Model</u>	<u>Adj.</u>	<u>Nouns</u>	<u>Verbs</u>
Glove (Pennington et al., 2014)	0.571	0.377	0.163
PPMI-Bag-of-words	0.548	0.451	0.276
word2vec CBOW (Mikolov et al,. 2013)	0.579	0.48	0.252
Dep (Levy and Goldberg, 2014)	0.54	0.449	0.376
NNSE (Murphy et al., 2012)	0.594	0.487	0.318
word2vec skip-gram (Mikolov et al,. 2013)	0.604	0.501	0.307
3 rd -order SP ⁽⁺⁾	0.663	0.497	0.578

Antonyms

Word Pair	SP		SC
word I an	+AN	-AN	50
new - old	1	6	6
narrow - wide	1	7	8
necessary - unnecessary	2	2	9
bottom - top	3	8	10
absence - presence	4	7	9
receive - send	1	9	8
fail - succeed	1	8	6

Summary

- Symmetric patterns are useful for representing word similarity
 - They capture **similarity** and not **relatedness**
 - They are able to mark antonym pairs as dissimilar
- First-, second- and third-order SPs are useful
 - **5.5%** improvement over six state-of-the-art models
 - **10%** improvement with a **joint** model
 - 20% improvement on verbs

Future Work

Enhancing bag-of-words models with symmetric patterns information

• Does order count? **asymmetric** symmetric patterns

roys02@cs.huji.ac.il http://www.cs.huji.ac.il/~roys02/

Word Similarity via Symmetric Patterns @ Roy Schwartz