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Deep Learning Models for NLP: Overview
Case Study: Sentiment Analysis

I saw such a great talk today
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Main component in
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Each Transition Defines a Weight Function
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Motivation: Soft Pattern Matching

I such a great talk
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Solution: Neural Transitions
Schwartz et al., ACL 2018
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I Example 2: the
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I Step 1: word → Rd
I Word embeddings
I Similar words are encoded in similar vectors

I Step 2: Accept all word vectors
I Step 3: weights: fθ : Rd → R

I These functions favor specific words
I θ parameters are learned
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Neural Weighted Finite-State Automata
Schwartz et al., ACL 2018
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v – word vectors
θ = (θ0, θ1, θ2, θ3) –
learned parameters

I Neural WFSAs accept any sequence,1 but prefer certain sequences

I aaa
I Example 1: such a great talk

I high score: what a great talk, such an awesome talk
I low score: such a horrible talk, such a black cat, john went to school

I Example 2: is not very exciting
I high score: is not particularly exciting, are not very inspiring

1Pending length constraints
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Training Procedure
Formally

End-to-end training:
I Input

I
s0 s1 s2 s3 s4

fθ0(v) fθ1(v) fθ2(v) fθ3(v)

1 / 1

I Word embeddings: word → Rd

I Training data: pairs of
<document, sentiment label>

I Output
I Parameter values: θ

Test:
I Input

I
s0 s1 s2 s3 s4

fθ0(v) fθ1(v) fθ2(v) fθ3(v)

1 / 1

I Word embeddings: word → Rd

I Learned parameters: θ
I New data: <document>

I Output
I Prediction: <sentiment label>

I Standard training procedure
I Backpropagation
I Stochastic gradient descent

.
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Benefits of Neural WFSAs 1:
Informed Model Development
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Benefits of Neural WFSAs 2:

I They are neural
I Backpropagation
I Stochastic gradient descent
I PyTorch, TensorFlow, AllenNLP

I Coming up:
I Many deep models are mathematically equivalent to neural WFSAs

I A (new) joint framework
I Allows extension of these models
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Case Study: Convolutional Neural Networks (ConvNets)
A Linear-Kernel Filter with Max-Pooling
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Proposition 1: ConvNet Filters are Computing WFSA scores
Schwartz et al., ACL 2018

I fθj (v) = θj · v
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ConvNets are (Implicitly) Computing WFSA Scores!

ConvNet : Sθ(v1 : vd) =
∑
j=1:d

(θj · vj) (1)

Neural WFSA : sθ(v1 : vd) =
∑
j=1:d

(θj · vj) (2)
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A ConvNet Learns a Fixed-Length Soft-Pattern!
Schwartz et al., ACL 2018
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I E.g., “such a great talk”
I what a great song
I such an awesome movie
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Improving ConvNets: SoPa (Soft-Patterns)
Schwartz et al., ACL 2018

I Language pattern are often flexible-length
I such a great talk

I such a great, funny, interesting talk
I such great shoes
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Sentiment Analysis Experiments

I saw such a great talk today
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v1:7=

Classify (U/D)

maxi≤js(vi : vj, θ
(k))
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Sentiment Analysis Results
Schwartz et al., ACL 2018
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Interpreting SoPa
Soft Patterns!

I For each learned pattern, extract the 4 top scoring phrases in the training set

Highest Scoring Phrases

Patt. 1

mesmerizing portrait of a
engrossing portrait of a
clear-eyed portrait of an
fascinating portrait of a

Highest Scoring Phrases

Patt. 2

honest , and enjoyable
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energetic , and surprisingly

unpretentious , charmingSL , quirky
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Thank you!
Roy Schwartz

homes.cs.washington.edu/~roysch/ roysch@cs.washington.edu
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Many Existing Deep Models are Neural WFSAs!
Peng, Schwartz et al., EMNLP 2018

Mikolov et al. arXiv 2014
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I Six recent recurrent neural networks (RNN) models are also implicitly computing
WFSA scores
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Developing more Robust WFSA Models
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Sentiment Analysis Results
Peng, Schwartz et al., EMNLP 2018
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Language Modeling Results
Peng, Schwartz et al., EMNLP 2018

lower is better
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Deep Learning

U backpropagation

U stochastic gradient descent

U PyTorch, TensorFlow, AllenNLP

U state-of-the-art

D architecture engineering

Weighted Finite-State Automata

U widely studied

U understandable

U interpretable

U informed model development

D low performance
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Work in Progress 1: Are All Deep Models for NLP Equivalent to WFSAs?

I Elman RNN: hi = σ(Whi−1 +Uvi + b)

I The interaction between hi and hi−1 is via affine transformations followed by
nonlinearities

I Same for LSTM

I Most probably not equivalent to a WFSA

31 / 37



Work in Progress 2: Automatic Model Development
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Vulić et al., CoNLL 2017
Peters et al., 2018

sequence
encoders

Schwartz et al., ACL 2018
Peng et al., EMNLP 2018
Liu et al., RepL4NLP 2018
*best paper award*

output:
prediction

1 / 8
33 / 37



Other Projects

I saw such a great talk today

v1 v2 v3 v4 v5 v6 v7

v1:7

Classify (U/D)

input:
words

Schwartz et al., EMNLP 2013
Schwartz et al., COLING 2014

word
embeddings

Schwartz et al., CoNLL 2015
Rubinstein et al., ACL 2015
Schwartz et al., NAACL 2016
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Annotation Artifacts in NLP Datasets
Schwartz et al., CoNLL 2017; Gururangan, Swayamdipta, Levy, Schwartz et al., NAACL 2018

Premise A person is running on the beach

Hypothesis The person is sleeping

entailment
contradiction
neutral

Textual Entailment (state-of-the-art ∼90% accuracy)
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I The word “sleeping” is over-represented in the training data with contradiction label

I annotation artifact

I State-of-the-art models focus on this word rather than understanding the text

I Models are not as strong as we think they are
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Long Term Vision
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Long Term Vision

I Explainable models

I Unbiased models
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SoPa Complexity

I Running the Viterbi (1967) algorithm on a sequence of n tokens and a WFSA of d
states typically takes O(d3 + d2(n))

I We only allow zero or one ε-transition at a time ⇒ O(d2(n))

I We only allow self-loop and main path transitions ⇒ O(dn)

I Scores on all patterns can be computed in parallel
I GPU optimization further reduces the observed runtime to be sublinear in d

back to main
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Interpreting SoPa
Visualizing Sentiment Predictions

I Leave-one-out method on all patterns

I Visualize the spans with the largest (positive) and (negative) contribution

Analyzed Documents

it’s dumb, but more importantly, it’s just not scary

While its careful pace and seemingly opaque story may not satisfy every movie-
goer’s appetite, the film’s final scene is soaringly, transparently moving

3 / 11



LSTMs Exploit Linguistic Attributes of Data
Liu, Levy, Schwartz et al., RepL4NLP 2018, best paper award

I Non-linguistic task

I Although they weren’t
designed that way, LSTMs do
much better when trained on
language data
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Case Study 2: Recurrent Neural Networks (RNN)

Interpretable
More robust
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Recurrent Neural Networks: Hidden States

I saw such a great talk today
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Multiple Variants of Recurrent Neural Networks

I Elman (1990)

LSTM (Hochreiter and
Schmidhuber, 1997)

I GRU (Cho et al., 2014)

I SGU (Gao and Glowacka,
2016)

I RAN (Lee et al., 2017)

I SCRN (Mikolov et al., 2014)

I T-RNN (Balduzzi and Ghifary,
2016)

I RCNN (Lei et al., 2016)

I Q-RNN (Bradbury et al., 2017)

I ISAN (Foerster et al., 2017)

I SoPa (Schwartz et al., 2018)

I SRU (Lei et al., 2018)

I Rational RNNs

I What do different RNN
variants have in common?

I What are they learning?

I Can we improve them?
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Example: Strongly-Typed Recurrent Neural Networks
Balduzzi and Ghifary (2016)

I A simple, competitive RNN
I Draws inspiration from physics and functional programming

I hi = zi · hi−1 + ui
I zi,ui are non-linear parameterized functions of vi

I Let xi = [xi]k:

hn = zn · hn−1 + un

= zn · (zn−1·hn−2+un−1) + un

= zn · (zn−1 · (zn−2 · hn−3 + un−2) + un−1) + un

= . . .

=

n−1∑
i=1

ui

n∏
j=i+1

zj

+ un
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Weighted Finite-State Automata!

s0 s1
f0→1(v, θ)

1 f1→1(v, θ)

7 / 8

I Soft Pattern: W
I Ignore the self-loops for simplicity

I S2 (v1 : vn) =
n−1∑
i=1

(
f0�1(vi, θ)

n∏
j=i+1

f1�1(vj , θ)

)
+ f0�1(vn, θ)
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Strongly-Typed RNNs are Rational!
Can Be Computed Using a Set of WFSAs

hn =

n−1∑
i=1

(
ui

n∏
j=i+1

zj

)
+ un

S2(v1 : vn) =

n−1∑
i=1

(
f0�1(vi, θ)

n∏
j=i+1

f1�1(vj , θ)

)
+ f0�1(vn, θ)
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Work in Progress 3: Make your own Deep Model!
Deep Model

s0 s1 s2 s3 s4

f(v, θ)

fθε
()

4 / 8
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