Towards Interpretable Deep Learning for Natural Language Processing

Roy Schwartz

University of Washington & Allen Institute for Artificial Intelligence

December 2018

(Deep-Learning-Based) AI Today

AllenNI P Machine Comprehension Textual Entailment Semantic Role Labeling Coreference Resolution Named Entity Recognition **Constituency Parsing** Dependency Parsing **Open Information**

WikiTableQuestions Semantic Parser

- backpropagation
- stochastic gradient descent
- PyTorch, TensorFlow, AllenNLP
- 🖆 state-of-the-art

- backpropagation
- 🕼 stochastic gradient descent
- PyTorch, TensorFlow, AllenNLP
- 🖆 state-of-the-art
- \mathbb{R} architecture engineering

- backpropagation
- 🕼 stochastic gradient descent
- PyTorch, TensorFlow, AllenNLP
- 🖆 state-of-the-art
- **I** → architecture engineering

- 🖆 backpropagation
- stochastic gradient descent
- PyTorch, TensorFlow, AllenNLP
- 🖆 state-of-the-art
- **I** architecture engineering

Weighted Finite-State Automata

- widely studied
- 🖆 understandable
- interpretable
- informed model development

- 🖆 backpropagation
- stochastic gradient descent
- PyTorch, TensorFlow, AllenNLP
- 🖆 state-of-the-art
- **I** architecture engineering

Weighted Finite-State Automata

- widely studied
- 🖆 understandable
- interpretable
- informed model development
- **I** low performance

- 🖆 backpropagation
- stochastic gradient descent
- PyTorch, TensorFlow, AllenNLP
- 🖆 state-of-the-art
- architecture engineering

Weighted Finite-State Automata

- widely studied
- 🕼 understandable
- interpretable
- informed model development
- R low performance

Deep Learning Models for NLP: Overview

Case Study: Sentiment Analysis

Deep Learning Models for NLP: Overview

Case Study: Sentiment Analysis

Deep Learning Models for NLP: Overview

Case Study: Sentiment Analysis

Overview

- Background: Weighted Finite-State Automata
- Neural Weighted Finite-State Automata
- Existing Deep Models as Weighted Finite-State Automata
 - Case Study: Convolutional neural networks

Overview

- Background: Weighted Finite-State Automata
- Neural Weighted Finite-State Automata
- Existing Deep Models as Weighted Finite-State Automata
 - Case Study: Convolutional neural networks

Background: Finite-State Automata

Regular Expressions (Patterns)

Background: Finite-State Automata

Regular Expressions (Patterns)

Pattern: such a great talk

- (Weighted) pattern: such a great talk
 - Weights are typically pre-specified

- (Weighted) pattern: such a great talk
 - Weights are typically pre-specified
- ► The score of a sequence is the sum of transition scores

- (Weighted) pattern: such a great talk
 - Weights are typically pre-specified
- ► The score of a sequence is the sum of transition scores

- (Weighted) pattern: such a great talk
 - Weights are typically pre-specified
- ► The score of a sequence is the sum of transition scores

- (Weighted) pattern: such a great talk
 - Weights are typically pre-specified
- ► The score of a sequence is the sum of transition scores

- (Weighted) pattern: such a great talk
 - Weights are typically pre-specified
- ► The score of a sequence is the sum of transition scores

Overview

- Background: Weighted Finite-State Automata
- Neural Weighted Finite-State Automata
- Existing Deep Models as Weighted Finite-State Automata
 - Case Study: Convolutional neural networks

Overview

- Background: Weighted Finite-State Automata
- Neural Weighted Finite-State Automata
- Existing Deep Models as Weighted Finite-State Automata
 - Case Study: Convolutional neural networks

Motivation: Soft Pattern Matching

- such a great talk
 - such a <u>wonderful</u> talk, such a lovely talk

Motivation: Soft Pattern Matching

- such a great talk
 - such a <u>wonderful</u> talk, such a lovely talk
- ► Naive solution:

Motivation: Soft Pattern Matching

- such a great talk
 - such a <u>wonderful</u> talk, such a lovely talk
- ► Naive solution:

- Problem: not scalable
 - what a great talk, such <u>an</u> <u>awesome</u> talk

$$\underbrace{\mathbf{s}_0}_{\mathsf{great}/0.3} \underbrace{\mathbf{s}_1}_{\mathsf{s}_1} \underbrace{\mathsf{s}_1}_{\mathsf{s}_1} \underbrace{\mathsf{s}_1} \underbrace{\mathsf{s}_1}_{\mathsf{s}_1} \underbrace{\mathsf{s}_1}_{\mathsf{s}_1} \underbrace{\mathsf{s}_1}_{\mathsf{s}_1} \underbrace{\mathsf{s}_1}_{\mathsf{s}_1} \underbrace{\mathsf{s}_1}_{\mathsf{s}_1} \underbrace{\mathsf{s}_1}_{\mathsf{s}_1} \underbrace{\mathsf{s}_1} \underbrace{\mathsf{s$$

- Step 1: word $\rightarrow \mathbb{R}^d$
 - Word embeddings
 - Similar words are encoded in similar vectors

- Step 1: word $\rightarrow \mathbb{R}^d$
 - Word embeddings
 - Similar words are encoded in similar vectors
- Step 2: Accept all word vectors

$$\underbrace{\mathbf{s}_{0}}_{\mathsf{s}_{0}} \xrightarrow{\mathsf{great}/0.3} \underbrace{\mathbf{s}_{1}}_{\mathsf{s}_{1}} \xrightarrow{\mathsf{s}_{0}} \underbrace{\mathbf{s}_{0}}_{\mathsf{s}_{0}} \xrightarrow{\forall \mathbf{v}/\mathbf{f}_{\theta}(\mathbf{v})} \underbrace{\mathbf{s}_{1}}_{\mathsf{s}_{1}}$$

- Step 1: word $\rightarrow \mathbb{R}^d$
 - Word embeddings
 - Similar words are encoded in similar vectors
- ► Step 2: Accept all word vectors
- Step 3: weights: $\mathbf{f}_{\theta} : \mathbb{R}^d \to \mathbb{R}$
 - These functions favor specific words
 - θ parameters are learned

- Neural transitions accept all words,
- but favor specific words

- Neural transitions accept all words,
- but favor specific words
- ► Example 1: great
 - ► high score: great, awesome, good
 - Iow score: bad, child, three

- Neural transitions accept all words,
- but favor specific words
- ► Example 1: great
 - ► high score: great, awesome, good
 - Iow score: bad, child, three
- ► Example 2: the
 - high score: the, a, an
 - Iow score: car, love, well

Neural Weighted Finite-State Automata Schwartz et al., ACL 2018

v – word vectors $\theta = (\theta_0, \theta_1, \theta_2, \theta_3)$ – learned parameters

▶ Neural WFSAs accept any sequence,¹ but prefer certain sequences

¹Pending length constraints

Neural Weighted Finite-State Automata Schwartz et al., ACL 2018

v – word vectors $\theta = (\theta_0, \theta_1, \theta_2, \theta_3)$ – learned parameters

Neural WFSAs accept any sequence,¹ but prefer certain sequences

• Example 1: *such a great talk*

- high score: what a great talk, such an awesome talk
- Iow score: such a horrible talk, such a black cat, john went to school

¹Pending length constraints
Neural Weighted Finite-State Automata Schwartz et al., ACL 2018

v – word vectors $\theta = (\theta_0, \theta_1, \theta_2, \theta_3)$ – learned parameters

► Neural WFSAs accept any sequence,¹ but prefer certain sequences

- Example 1: *such a great talk*
 - high score: what a great talk, such an awesome talk
 - ► low score: such a horrible talk, such a black cat, john went to school
- Example 2: is not very exciting
 - ► high score: is not particularly exciting, are not very inspiring

¹Pending length constraints

Training Procedure

Formally

End-to-end training:

- Input

 - Word embeddings: word $ightarrow \mathbb{R}^d$
 - Training data: pairs of <document, sentiment label>
- Output
 - Parameter values: θ

Training Procedure

Formally

End-to-end training:

Input

- $\blacktriangleright \quad \underbrace{ s_0 \qquad }_{s_0} \underbrace{ f_{\theta_0}(v) \qquad }_{s_1} \underbrace{ f_{\theta_1}(v) \qquad }_{s_2} \underbrace{ f_{\theta_2}(v) \qquad }_{s_3} \underbrace{ s_3 \qquad }_{f_{\theta_3}(v) \qquad } \underbrace{ s_4 \qquad }_{s_4} \underbrace{ f_{\theta_3}(v) \qquad }_{s_5} \underbrace{ f_{\theta_3}(v) \qquad }_{s_5} \underbrace{ f_{\theta_3}(v) \qquad }_{s_6} \underbrace{ f_{\theta_3}(v) \ }_{s_6} \underbrace{ f_{\theta_3}($
- Word embeddings: word $ightarrow \mathbb{R}^d$
- Training data: pairs of <document, sentiment label>
- Output
 - Parameter values: θ

Test:

► Input

- $\blacktriangleright \quad \underbrace{ s_0 \qquad }_{s_0} \underbrace{ f_{\theta_1}(v) }_{s_1} \underbrace{ s_1 \qquad }_{s_2} \underbrace{ f_{\theta_1}(v) }_{s_2} \underbrace{ s_2 \qquad }_{s_3} \underbrace{ f_{\theta_3}(v) }_{s_4} \underbrace{ s_4 }_{s_4} \underbrace{$
- Word embeddings: word $ightarrow \mathbb{R}^d$
- ► Learned parameters: θ
- New data: <document>
- ► Output
 - Prediction: <sentiment label>

Training Procedure

Formally

End-to-end training:

Input

- $\blacktriangleright \quad \underbrace{ \underset{0}{\overset{0}{\underset{0}}} \underbrace{ \underset{0}{\overset{0}{\underset{0}}} \underbrace{ \underset{0}{\overset{0}{\underset{0}}} \underbrace{ \underset{0}{\overset{0}{\underset{0}}{\underset{0}}} \underbrace{ \underset{0}{\underset{0}}} \underbrace{ \underset{0}{\underset{0}}{\underset{0}} \underbrace{ \underset{0}{\underset{0}}} \underbrace{ \underset{0}{\underset{0}}{\underset{0}}} \underbrace{ \underset{0}{\underset{0}}} \underbrace{ \underset{0}{\underset{0}} \underbrace{ \underset{0}{\underset{0}}} \underbrace{ \underset{0}{\underset{0}} \underbrace{ \underset{0}{\underset{0}}} \underbrace{ \underset{0}{\underset{0}} \underbrace{ \underset{0}} \underbrace{ \underset{0}}$
- Word embeddings: word $\rightarrow \mathbb{R}^d$
- Training data: pairs of <document, sentiment label>
- Output
 - Parameter values: θ
- Standard training procedure
 - Backpropagation
 - Stochastic gradient descent

Test:

► Input

- $\blacktriangleright \quad \underbrace{ s_0 \qquad } \quad \underbrace{ f_{\theta_0}(v) }_{S_1} \underbrace{ f_{\theta_1}(v) }_{S_2} \underbrace{ f_{\theta_2}(v) }_{S_2} \underbrace{ f_{\theta_3}(v) }_{S_3} \underbrace{ f_{\theta_3}(v) }_{S_4} \underbrace{ s_4 }_{S_4} \underbrace{ f_{\theta_3}(v) }_{S_5} \underbrace{ f_{\theta_3}$
- Word embeddings: word $ightarrow \mathbb{R}^d$
- ► Learned parameters: θ
- New data: <document>
- Output
 - Prediction: <sentiment label>

Informed Model Development

 \mathbf{s}_0 \mathbf{s}_1 \mathbf{s}_2 \mathbf{s}_3 \mathbf{s}_4

Fixed length: such a great talk

Informed Model Development

 \mathbf{S}_1 \mathbf{s}_2 \mathbf{s}_3 \mathbf{s}_4 \mathbf{S}_0 \mathbf{s}_4) \mathbf{s}_0 \mathbf{s}_1 \mathbf{s}_2 \mathbf{s}_3

Fixed length: such a great talk

Self loops: such a great, wonderful, funny talk

Informed Model Development

 $\underbrace{s_0} \xrightarrow{s_1} \underbrace{s_2} \xrightarrow{s_3} \underbrace{s_4}$

Fixed length: such a great talk

Self loops: such a great, wonderful, funny talk

Epsilon transitions: *such* _ *great shoes*

Informed Model Development

 $\overbrace{s_0} \longrightarrow \overbrace{s_1} \overbrace{s_2} \longrightarrow \overbrace{s_3} \longrightarrow \overbrace{s_4}$

Fixed length: such a great talk

Self loops: such a great, wonderful, funny talk

Epsilon transitions: such great shoes

. . .

► They are **neural**

- Backpropagation
- Stochastic gradient descent
- PyTorch, TensorFlow, AllenNLP

► They are **neural**

- Backpropagation
- Stochastic gradient descent
- PyTorch, TensorFlow, AllenNLP
- Coming up:
 - Many deep models are mathematically equivalent to neural WFSAs
 - ► A (new) joint framework
 - Allows extension of these models

Overview

- Background: Weighted Finite-State Automata
- ► Neural Weighted Finite-State Automata
- Existing Deep Models as Weighted Finite-State Automata
 - Case Study: Convolutional neural networks

Overview

- Background: Weighted Finite-State Automata
- Neural Weighted Finite-State Automata
- ► Existing Deep Models as Weighted Finite-State Automata
 - ► Case Study: Convolutional neural networks

Case Study: Convolutional Neural Networks (ConvNets) A Linear-Kernel Filter with Max-Pooling

Case Study: Convolutional Neural Networks (ConvNets) A Linear-Kernel Filter with Max-Pooling

Proposition 1: ConvNet Filters are Computing WFSA scores Schwartz et al., ACL 2018

Proposition 1: ConvNet Filters are Computing WFSA scores Schwartz et al., ACL 2018

$$\blacktriangleright \mathbf{f}_{\theta_j}(\mathbf{v}) = \theta_j \cdot \mathbf{v}$$

Proposition 1: ConvNet Filters are Computing WFSA scores Schwartz et al., ACL 2018

•
$$\mathbf{f}_{\theta_j}(\mathbf{v}) = \theta_j \cdot \mathbf{v}$$

• $s_{\theta}(\mathbf{v}_1 : \mathbf{v}_4) = \sum_{j=1:4} \mathbf{f}_{\theta_j}(\mathbf{v}_j) = \sum_{j=1:4} (\theta_j \cdot \mathbf{v}_j)$

ConvNets are (Implicitly) Computing WFSA Scores!

ConvNet :
$$S_{\theta}(\mathbf{v}_{1} : \mathbf{v}_{d}) = \sum_{j=1:d} (\theta_{j} \cdot \mathbf{v}_{j})$$
 (1)
Neural WFSA : $s_{\theta}(\mathbf{v}_{1} : \mathbf{v}_{d}) = \sum_{j=1:d} (\theta_{j} \cdot \mathbf{v}_{j})$ (2)

ConvNets are (Implicitly) Computing WFSA Scores!

ConvNet :
$$S_{\theta}(\mathbf{v}_{1} : \mathbf{v}_{d}) = \sum_{j=1:d} (\theta_{j} \cdot \mathbf{v}_{j})$$
 (1)
Neural WFSA : $s_{\theta}(\mathbf{v}_{1} : \mathbf{v}_{d}) = \sum_{j=1:d} (\theta_{j} \cdot \mathbf{v}_{j})$ (2)

Benefits:

✓ Interpret ConvNets

✓ Improve ConvNets

A ConvNet Learns a Fixed-Length *Soft*-Pattern! Schwartz et al., ACL 2018

- ► E.g., "such a great talk"
 - what a great song
 - such <u>an</u> <u>awesome</u> <u>movie</u>

- Language pattern are often flexible-length
- ► such a great talk
 - such a great, funny, interesting talk
 - ▶ such great <u>shoes</u>

- Language pattern are often flexible-length
- ► such a great talk
 - such a great, funny, interesting talk
 - ▶ such great <u>shoes</u>

Convolutional Neural Network:

$$S_{\theta}(\mathbf{v}_1:\mathbf{v}_d) = \sum_{j=1:d} (\theta_j \cdot \mathbf{v}_j)$$

- Language pattern are often flexible-length
- ► such a great talk
 - such a great, funny, interesting talk
 - ▶ such great <u>shoes</u>

$$\underbrace{\mathbf{S}_{0}}_{such} \underbrace{\mathbf{S}_{1}}_{a} \xrightarrow{a} \underbrace{\mathbf{S}_{2}}_{great} \underbrace{\mathbf{S}_{3}}_{s} \xrightarrow{talk} \underbrace{\mathbf{S}_{4}}_{s}$$

- Language pattern are often flexible-length
- ► such a great talk
 - such a great, funny, interesting talk
 - ▶ such great <u>shoes</u>

- Language pattern are often flexible-length
- ► such a great talk
 - such a great, funny, interesting talk
 - ▶ such great <u>shoes</u>

- Language pattern are often flexible-length
- ► such a great talk
 - such a great, funny, interesting talk
 - ▶ such great <u>shoes</u>

Sentiment Analysis Experiments

Sentiment Analysis Experiments

Sentiment Analysis Experiments

Sentiment Analysis Results Schwartz et al., ACL 2018

Sentiment Analysis Results Schwartz et al., ACL 2018

Sentiment Analysis Results Schwartz et al., ACL 2018

Interpreting SoPa Soft Patterns!

▶ For each learned pattern, extract the 4 top scoring phrases in the training set

▶ For each learned pattern, extract the 4 top scoring phrases in the training set

Highest Scoring Phrases			
Patt. 1	mesmerizing engrossing clear-eyed fascinating	portrait of a portrait of a portrait of an portrait of a	

▶ For each learned pattern, extract the 4 top scoring phrases in the training set

Highest Scoring Phrases	Highest Scoring Phrases
Patt. 1 mesmerizing portrait of a engrossing portrait of a clear-eyed portrait of an fascinating portrait of a	Patt. 2honest,and enjoyableforceful,and beautifullyenergetic,and surprisingly

▶ For each learned pattern, extract the 4 top scoring phrases in the training set

Highest Scoring Phrases	Highest Scoring Phrases
Patt. 1 mesmerizing portrait of a engrossing portrait of a clear-eyed portrait of an fascinating portrait of a	$\left \begin{array}{ccc} Patt. 2 \\ Patt. 2 \\ \end{array} \right \begin{array}{c} honest & , & \text{and enjoyable} \\ forceful & , & \text{and beautifully} \\ energetic & , & \text{and surprisingly} \\ unpretentious & , & charming_{SL} \\ \end{array} \right , & quirky \end{array}$
	$(s_{1}) \xrightarrow{(i)} (s_{1}) \xrightarrow{(i)} (s_{2}) \xrightarrow{(i)} (s_{2}) \xrightarrow{(i)} (s_{3}) \xrightarrow{(i)} (s_{4}) \xrightarrow{(i)} (s_{$

More expressive WFSA

Many Existing Deep Models are Neural WFSAs!

Peng, Schwartz et al., EMNLP 2018

Mikolov et al. Balduzzi and Ghifary Bradbury et al. Lei et al.	arXiv 2014 ICML 2016 ICLR 2017 EMNLP 2018	
Lei et al.	NAACL 2016	
Foerster et al.	ICML 2017	

Many Existing Deep Models are Neural WFSAs!

Peng, Schwartz et al., EMNLP 2018

Mikolov et al. Balduzzi and Ghifary Bradbury et al. Lei et al.	arXiv 2014 ICML 2016 ICLR 2017 EMNLP 2018	s_0 s_1
Lei et al.	NAACL 2016	(s_0) (s_1) (s_2)
Foerster et al.	ICML 2017	

Many Existing Deep Models are Neural WFSAs!

Peng, Schwartz et al., EMNLP 2018

 Six recent recurrent neural networks (RNN) models are also implicitly computing WFSA scores

Developing more Robust WFSA Models

Lei et al. (2016)

Mikolov et al. (2014) Balduzzi and Ghifary (2016) Bradbury et al. (2017) Lei et al. (2018)

Developing more Robust WFSA Models

Sentiment Analysis Results Peng, Schwartz et al., EMNLP 2018

Language Modeling Results

Peng, Schwartz et al., EMNLP 2018

Deep Learning

- 🖆 backpropagation
- stochastic gradient descent
- PyTorch, TensorFlow, AllenNLP
- 🖆 state-of-the-art
- architecture engineering

Weighted Finite-State Automata

- widely studied
- 🖆 understandable
- interpretable
- informed model development
- R low performance

Work in Progress 1: Are All Deep Models for NLP Equivalent to WFSAs?

- Elman RNN: $\mathbf{h}_i = \sigma(\mathbf{W}\mathbf{h}_{i-1} + \mathbf{U}\mathbf{v}_i + \mathbf{b})$
- ▶ The interaction between h_i and h_{i-1} is via affine transformations followed by nonlinearities
 - Same for LSTM MAN
- Most probably not equivalent to a WFSA

Deep learning: model engineering

 S_1

S2

 S_4

Schwartz et al., CoNLL 2017; Gururangan, Swayamdipta, Levy, Schwartz et al., NAACL 2018

Premise	A person is running on the beach		
Hypothesis	The person is sleeping		

Textual Entailment (state-of-the-art ~90% accuracy)

Schwartz et al., CoNLL 2017; Gururangan, Swayamdipta, Levy, Schwartz et al., NAACL 2018

Premise	A person is running on the beach	
Hypothesis	The person is sleeping $\overbrace{?}{?}$	entailment contradiction neutral

Textual Entailment (state-of-the-art ~90% accuracy)

Schwartz et al., CoNLL 2017; Gururangan, Swayamdipta, Levy, Schwartz et al., NAACL 2018

Textual Entailment (state-of-the-art ~90% accuracy)

AllenNLP Demo!

Schwartz et al., CoNLL 2017; Gururangan, Swayamdipta, Levy, Schwartz et al., NAACL 2018

Textual Entailment (state-of-the-art ~90% accuracy)

- ► The word "sleeping" is over-represented in the training data with contradiction label
 - annotation artifact
- State-of-the-art models focus on this word rather than understanding the text

Schwartz et al., CoNLL 2017; Gururangan, Swayamdipta, Levy, Schwartz et al., NAACL 2018

Textual Entailment (state-of-the-art ~90% accuracy)

► The word "sleeping" is over-represented in the training data with contradiction label

annotation artifact

- State-of-the-art models focus on this word rather than understanding the text
- Models are not as strong as we think they are

Long Term Vision

Long Term Vision

- ► Explainable models
- Unbiased models

Special Thanks to...

Special Thanks to...

Special Thanks to...

Neural WFSAs as Sequence Encoders

Neural WFSAs as Sequence Encoders

back to main

SoPa Complexity

- ► Running the Viterbi (1967) algorithm on a sequence of n tokens and a WFSA of d states typically takes O(d³ + d²(n))
- We only allow zero or one ϵ -transition at a time $\Rightarrow O(d^2(n))$
- We only allow self-loop and main path transitions $\Rightarrow O(dn)$
- Scores on all patterns can be computed in parallel
 - \blacktriangleright GPU optimization further reduces the observed runtime to be sublinear in d

Interpreting SoPa

Visualizing Sentiment Predictions

- Leave-one-out method on all patterns
- ▶ Visualize the spans with the largest (**positive**) and (*negative*) contribution

Analyzed Documents

it's dumb, but more importantly, it's just not scary

While its careful pace and seemingly *opaque story* may not satisfy every moviegoer's appetite, the film's final scene is soaringly, transparently moving

LSTMs Exploit Linguistic Attributes of Data Liu, Levy, Schwartz et al., RepL4NLP 2018, best paper award

Non-linguistic task

LSTMs Exploit Linguistic Attributes of Data Liu, Levy, Schwartz et al., RepL4NLP 2018, best paper award

Uniform
Unigram
5gram
10gram
50gram
Language

- Non-linguistic task
- Although they weren't designed that way, LSTMs do much better when trained on language data

Recurrent Neural Networks: Hidden States

Recurrent Neural Networks: Hidden States

Multiple Variants of Recurrent Neural Networks

- ► Elman (1990)
- LSTM (Hochreiter and Schmidhuber, 1997)
- ▶ GRU (Cho et al., 2014)
- SGU (Gao and Glowacka, 2016)
- RAN (Lee et al., 2017)

- SCRN (Mikolov et al., 2014)
- T-RNN (Balduzzi and Ghifary, 2016)
- RCNN (Lei et al., 2016)
- Q-RNN (Bradbury et al., 2017)
- ISAN (Foerster et al., 2017)
- SoPa (Schwartz et al., 2018)
- SRU (Lei et al., 2018)

Multiple Variants of Recurrent Neural Networks

- ► Elman (1990)
- LSTM (Hochreiter and Schmidhuber, 1997)
- ▶ GRU (Cho et al., 2014)
- SGU (Gao and Glowacka, 2016)
- RAN (Lee et al., 2017)

- SCRN (Mikolov et al., 2014)
- T-RNN (Balduzzi and Ghifary, 2016)
- RCNN (Lei et al., 2016)
- Q-RNN (Bradbury et al., 2017)
- ▶ ISAN (Foerster et al., 2017)
- SoPa (Schwartz et al., 2018)
- SRU (Lei et al., 2018)

- What do different RNN variants have in common?
- ► What are they learning?
- Can we improve them?

- ► A simple, competitive RNN
 - Draws inspiration from physics and functional programming

$$\blacktriangleright \mathbf{h}_i = \mathbf{z}_i \cdot \mathbf{h}_{i-1} + \mathbf{u}_i$$

• $\mathbf{z}_i, \mathbf{u}_i$ are non-linear parameterized functions of \mathbf{v}_i

- A simple, competitive RNN
 - Draws inspiration from physics and functional programming
- $\blacktriangleright \mathbf{h}_i = \mathbf{z}_i \cdot \mathbf{h}_{i-1} + \mathbf{u}_i$

• $\mathbf{z}_i, \mathbf{u}_i$ are non-linear parameterized functions of \mathbf{v}_i

• Let $\mathbf{x}_i = [\mathbf{x}_i]_k$:

 $\mathbf{h}_n = \mathbf{z}_n \cdot \mathbf{h}_{n-1} + \mathbf{u}_n$

- ► A simple, competitive RNN
 - Draws inspiration from physics and functional programming
- $\blacktriangleright \mathbf{h}_i = \mathbf{z}_i \cdot \mathbf{h}_{i-1} + \mathbf{u}_i$

• $\mathbf{z}_i, \mathbf{u}_i$ are non-linear parameterized functions of \mathbf{v}_i

• Let $\mathbf{x}_i = [\mathbf{x}_i]_k$:

$$\begin{aligned} \mathbf{h}_n &= \mathbf{z}_n \cdot \mathbf{h}_{n-1} + \mathbf{u}_n \\ &= \mathbf{z}_n \cdot (\mathbf{z}_{n-1} \cdot \mathbf{h}_{n-2} + \mathbf{u}_{n-1}) + \mathbf{u}_n \end{aligned}$$

- ► A simple, competitive RNN
 - Draws inspiration from physics and functional programming
- $\blacktriangleright \mathbf{h}_i = \mathbf{z}_i \cdot \mathbf{h}_{i-1} + \mathbf{u}_i$

• $\mathbf{z}_i, \mathbf{u}_i$ are non-linear parameterized functions of \mathbf{v}_i

• Let $\mathbf{x}_i = [\mathbf{x}_i]_k$:

$$egin{aligned} \mathbf{h}_n &= \mathbf{z}_n \cdot \mathbf{h}_{n-1} + \mathbf{u}_n \ &= \mathbf{z}_n \cdot (\mathbf{z}_{n-1} \cdot \mathbf{h}_{n-2} + \mathbf{u}_{n-1}) + \mathbf{u}_n \ &= \mathbf{z}_n \cdot (\mathbf{z}_{n-1} \cdot (\mathbf{z}_{n-2} \cdot \mathbf{h}_{n-3} + \mathbf{u}_{n-2}) + \mathbf{u}_{n-1}) + \mathbf{u}_n \end{aligned}$$

- ► A simple, competitive RNN
 - Draws inspiration from physics and functional programming
- $\blacktriangleright \mathbf{h}_i = \mathbf{z}_i \cdot \mathbf{h}_{i-1} + \mathbf{u}_i$

• $\mathbf{z}_i, \mathbf{u}_i$ are non-linear parameterized functions of \mathbf{v}_i

• Let $\mathbf{x}_i = [\mathbf{x}_i]_k$:

$$\begin{aligned} \mathbf{h}_n &= \mathbf{z}_n \cdot \mathbf{h}_{n-1} + \mathbf{u}_n \\ &= \mathbf{z}_n \cdot (\mathbf{z}_{n-1} \cdot \mathbf{h}_{n-2} + \mathbf{u}_{n-1}) + \mathbf{u}_n \\ &= \mathbf{z}_n \cdot (\mathbf{z}_{n-1} \cdot (\mathbf{z}_{n-2} \cdot \mathbf{h}_{n-3} + \mathbf{u}_{n-2}) + \mathbf{u}_{n-1}) + \mathbf{u}_n \\ &= \dots \\ &= \sum_{i=1}^{n-1} \left(\mathbf{u}_i \prod_{j=i+1}^n \mathbf{z}_j \right) + \mathbf{u}_n \end{aligned}$$

Weighted Finite-State Automata!

Weighted Finite-State Automata!

- ► Soft Pattern: W
 - Ignore the self-loops for simplicity

Weighted Finite-State Automata!

- ► Soft Pattern: W
 - Ignore the self-loops for simplicity

$$\blacktriangleright \ \mathfrak{S}_2 \ (\mathbf{v}_1:\mathbf{v}_n) = \sum_{i=1}^{n-1} \left(\mathbf{f}_{0,i}(\mathbf{v}_i,\theta) \prod_{j=i+1}^n \mathbf{f}_{1,i}(\mathbf{v}_j,\theta) \right) + \mathbf{f}_{0,i}(\mathbf{v}_n,\theta)$$

Strongly-Typed RNNs are Rational! Can Be Computed Using a Set of WFSAs

$$\mathbf{h}_n = \sum_{i=1}^{n-1} \left(\mathbf{u}_i \prod_{j=i+1}^n \mathbf{z}_j \right) + \mathbf{u}_n$$
$$S_2(\mathbf{v}_1 : \mathbf{v}_n) = \sum_{i=1}^{n-1} \left(\mathbf{f}_{0+1}(\mathbf{v}_i, \theta) \prod_{j=i+1}^n \mathbf{f}_{1+1}(\mathbf{v}_j, \theta) \right) + \mathbf{f}_{0+1}(\mathbf{v}_n, \theta)$$

Work in Progress 3: Make your own Deep Model!

Work in Progress 3: Make your own Deep Model!

David Balduzzi and Muhammad Ghifary. 2016. Strongly-typed recurrent neural networks. In *Proc. of ICML*.

James Bradbury, Stephen Merity, Caiming Xiong, and Richard Socher. 2017. Quasi-recurrent neural network. In *Proc. of ICLR*.

- Kyunghyun Cho, Bart van Merrienboer, Dzmitry Bahdanau, and Yoshua Bengio. 2014. On the properties of neural machine translation: Encoder-decoder approaches. In *Proc. of SSST*.
- Jeffrey L Elman. 1990. Finding structure in time. Cognitive science, 14(2):179–211.
- Jakob N. Foerster, Justin Gilmer, Jan Chorowski, Jascha Sohl-Dickstein, and David Sussillo. 2017. Intelligible language modeling with input switched affine networks. In *Proc. of ICML*.
- Yuan Gao and Dorota Glowacka. 2016. Deep gate recurrent neural network. In *Proc.* of ACML, pages 350–365.
- Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-term memory. *Neural Computation*, 9(8):1735–1780.
- Kenton Lee, Omer Levy, and Luke Zettlemoyer. 2017. Recurrent additive networks. arXiv:1705.07393.

- Tao Lei, Hrishikesh Joshi, Regina Barzilay, Tommi Jaakkola, Kateryna Tymoshenko, Alessandro Moschitti, and Lluís Màrquez. 2016. Semi-supervised question retrieval with gated convolutions. In *Proc. of NAACL*.
- Tao Lei, Yu Zhang, Sida I. Wang, Hui Dai, and Yoav Artzi. 2018. Simple recurrent units for highly parallelizable recurrence. In *Proc. of EMNLP*.
- Tomas Mikolov, Armand Joulin, Sumit Chopra, Michaël Mathieu, and Marc'Aurelio Ranzato. 2014. Learning longer memory in recurrent neural networks. arXiv:1412.7753.
- Marcel Paul Schützenberger. 1961. On the definition of a family of automata. *Information and Control*, 4(2-3):245–270.
- Roy Schwartz, Sam Thomson, and Noah A. Smith. 2018. SoPa: Bridging CNNs, RNNs, and weighted finite-state machines. In *Proc. of ACL*.
- A. Viterbi. 1967. Error bounds for convolutional codes and an asymptotically optimum decoding algorithm. *IEEE Transactions on Information Theory*, 13(2):260–269.