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Motivation
Visual Question Answering

• VQA dataset

• Antol et al. (2015)


• Input: an image and a question

• What sport is this man playing?

• Do you see a shadow?


• Output: answer

• Tennis, yes
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Spurious Correlations in VQA

• 40% of the questions in VQA starting 
with “What sport is this” are answered 
with “tennis”


• “yes” is the  answer to 87% of the 
questions in the VQA dataset starting 
with “Do you see a” 


• Zhang et al. (2016); Goyal et al. (2017)  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• Spurious correlations in NLP datasets
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ROC Story Cloze Task
Mostafazadeh et al. (2016)

• A story comprehension task


• The task: given a story prefix, distinguish between the coherent and the 
incoherent endings
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Spurious Correlations in ROC
S. et al. (2017); Cai et al. (2017)

• Train a binary classifier on the endings only 
• Ignoring the story prefix
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Natural Language Inference (NLI)

SNLI (Bowman et al., 2015); MNLI (Williams et al., 2018)
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Spurious Correlations in NLI Datasets
Gururangan, Swaymdipta, Levy, S., Bowman, Smith (2018); Poliak et al. (2018); Tsuchiya (2018)

• Train a hypothesis-only classifier

• No premise
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Other Spurious Correlations

• Other tasks

• Question answering (Kaushik & Lipton, 2018)

• Winograd Schema (Elazar et al., 2021

• …
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Mitigating Spurious Correlations

• Modify the model

• Adversarial networks (Belinkov et al., 2019; Grand and Belinkov, 2019; Wang et al., 2019; 

Cadene et al., 2019)

• Model ensembles (Clark et al., 2019,2020; He et al., 2019; Bahng et al., 2020)


• Modify the data
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Challenge Sets

• NLP models are very sensitive to their training domain


• Testing a model on a different distribution often leads to reduced performance

• Fixing this problem is one of the key challenges in NLP and AI in general


• Challenge dataset (aka adversarial datasets) intentionally aim to mislead the 
model

• The goal is to uncover specific model weaknesses
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Adversarial SQuAD
Jia et al. (2017)

(Rajpurkar et al., 2016)
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https://arxiv.org/abs/1707.07328
https://arxiv.org/abs/1606.05250


Challenge Sets

• Test various Types of Capabilities 

• Shift in distribution


• Ignoring noise


• Handling misspellings


• Handling negation


• Handling temporal modifications


• Applied to a Range of NLP Tasks

• NLI


• (Visual-/)Question answering


• Machine Translation


• Text classification


• …
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Dataset Balancing
Augmentation

• The key idea: balance-out spurious correlations


• Vision and Language datasets 

• VQA 2.0 (Goyal et al., 2017)

• GQA (Hudson and Manning, 2019)


• Language only

• ROC stories cloze task 1.5 (Sharma et al., 2018)
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https://arxiv.org/abs/1612.00837
https://arxiv.org/abs/1902.09506
https://aclanthology.org/P18-2119/


Adversarial Filtering (AF)
Zellers, Bisk, S. & Choi (2018)

• A multi-choice setting

• Assume a human-generated input passage


• An LM generates many possible continuations


• A discriminator trained to identify the 
machine-generated options


• Iteratively until convergence:

• Select easily-identifiable options

• Replace them with other (harder) options


• Validate resulting data with human experts
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Adversarial Filters of Dataset Biases (AFLite)
Sakaguchi et al. (2020)

• Start from a collected dataset D


• Iteratively

• Randomly break D into n different train/test splits


• Train a classifier on each training split


• Filter out the instances that are solved by most models


• Return filtered dataset
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https://arxiv.org/abs/1907.10641


Dataset Cartography
Swayamdipta, S. et al. (2020)

• Identify different regions in datasets


• Most examples are easy-to-learn 

• Training on the most ambiguous examples 
leads to better generalization
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Filtering is Widely Adopted

• Record (Zhang et al., 2018)


• DROP (Dua et al., 2019)


• HellaSWAG (Zellers et al., 2019)


•  (Bhagavatula et al., 2019)


• WinoGrande (Sakaguchi et al., 2020)


• …

αNLI
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https://arxiv.org/abs/1810.12885
https://arxiv.org/abs/1903.00161
https://arxiv.org/abs/1905.07830
https://arxiv.org/abs/1908.05739
https://arxiv.org/abs/1907.10641


Filtering as Balancing

• As the adversarial model grows, models will pick up subtler correlations


• The result is a fully balanced dataset
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Everything is Spurious!
Gardner et al. (2021)

• Every simple correlation between single word features and output labels is 
spurious


• Competent datasets: the marginal probability for every feature is uniform over 
the class label


• ∀xi, y ∈ Y, p(y |xi) =
1

|Y |
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https://arxiv.org/abs/2104.08646


The Balancing Approach

• Gardner et al. (2021):

• For each feature f:


• if (f contains information):


• => f can be exploited


• Balancing/Filtering:

• => To avoid exploitation, for each feature f, eliminate information in f
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https://arxiv.org/abs/2104.08646


Balancing too Little is Insufficient 

• The dataset is balanced for unigrams


• But still contains spurious bigrams features

• E.g., “very good”, as “not very good” yields 

negative sentiment
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Balancing too Little is Insufficient 

• The same example can apply with larger n’s


• More broadly, any phrase or feature combination can alter its meaning in 
some context

• Negation, sarcasm, humor, …


• As a result, balancing too little is insufficient for mitigating all spurious 
correlations
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Too much Balancing Leaves Nothing 

The dataset is also balanced for unigrams


But if we balance it for bigrams, we are left 
with no learnable signal
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Too much Balancing Leaves Nothing 

• Consider an NLP dataset D with maximal length n 

• By definition, balancing any combination of up to n features (including) leaves 
no learnable signal in D 

• Conclusion: balancing too much is not helpful either
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Does a sweet-spot exist between 
balancing too little and too much?
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Is Balancing even Desired? 

• Dataset balancing prevents models from having a fallback option in cases of 
uncertainty

• As these would evidently cause it to make mistakes on some inputs


• But fallback meanings are crucial for language understanding, as contexts are 
often underspecified 

• Graesser (2013)
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Is Balancing even Desired? 

• Especially relevant for world knowledge and 
common-sense knowledge

• Joe Biden is the president of the US

• A person is typically happy when they receive a 

present


• As a result, dataset balancing is undesired
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Is dataset balancing the right way forward?
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Suggested Alternatives

• Instead of balancing, augment datasets with richer contexts


• Instead of a closed label set, support abstention/interaction


• Instead of large-scale fine-tuning, move to few-shot learning
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How can we encourage the development of 
models robust to spurious correlations?
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Fight Bias with Bias
Reif & S. (2023)

• Balancing only hides the problem

• Some biases remain hidden in the data


• We want models that are robust to such biases


• Let’s amplify the biases in the data
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Amplify Biases???

• Could we ever create datasets that don’t contain exploitable biases?

• Linzen et al. (2020); S. & Stanovsky (2022)


• Biases “hide” in hard, filtered training sets 
⇒ Harder to evaluate impact on models


• Datasets with amplified biases will create a better testbed to develop 
methods for mitigating them
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https://doi.org/10.18653/v1/2020.acl-main.465


Train Set Test Set

❌

✅

✅a great achievement

filled with corny jokes

a disaster of a film

two hours of non-stop jokes

a great disaster flick

 full of corny dialogue ✅

✅

🤔

… …

🤔

✅

✅

❌

Don’t Filter, Amplify
Bias-amplified Splits: Biased Training, Anti-biased Test
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Definitions of Biased and Anti-biased

• Dataset cartography

• Swayamdipta, S. et al. (2020)


• Partial-input baselines

• Gururangan, Swayamdipta, Levy, S. et al (2018); Poliak et al. (2018)


• Minority examples 

• A method we introduce to detect minority examples
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WHOOPS!
A Vision-and-Language Benchmark of Synthetic and Compositional Images  
Bitton-Guetta, Bitton, Hassel, Schmidt, Elovici, Stanovsky & S. (2023)

• A dataset of “weird” images

• Generated by designers using image generation tools


• Humans both 

• Easily understand what’s going on in the image

• Can generate explanations of what’s weird in the 

image 

• Machines do much poorly
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Results
MultiNLI; ROBERTA-large

Tr
ai
n

• Most validation data is biased

• Training on biased data leads to small 

differences on standard validation set


• Training on all data and testing on 
anti-biased data leads to large 
performance drops


• Training on biased data and testing 
on anti-biased data leads to 
additional large drops
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