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Overview

Lexico-syntactic Patterns

— Patterns are useful for extracting semantic data

Flexible Patterns

— Lexico-syntactic patterns extracted in a fully unsupervised manner

Also, (more) useful for extracting semantic data

— Some interesting results from our lab

Latest results
— Authorship attribution of tweets using flexible patterns (EMNLP 2013)
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e Patterns of the form “Xis a country”, “X such as Y”, etc.

* Patterns potentially capture the context in which a word
participates
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Lexico-syntactic Patterns
Hearst, 1992

)l

Patterns of the form “Xis a country”, “X such as Y”, etc.

Patterns potentially capture the context in which a word
participates

For example:
— A dog participates in patterns (contexts) such as:
— “X'barks”, “X has a tail”, “X and cats”, ...
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Lexico-syntactic Patterns

* Hand crafted patterns have been used in many semantic tasks

* Acquiring the semantics of single words

— Building semantic lexicons (Riloff and Shepherd, 1997; Roark and
Charniak, 1998)

— Semantic class learning (Kozareva et al., 2008)

* Acquiring the semantics of relationships between words
— Discovering hyponymy (Hearst, 1992)
— Discovering meronymy (Berland and Charniak, 1999)
— Discovering Verb relations (Chklovski and Pantel, 2004)



Examples of Patterns

* Extracting country names

— “X’is a country”
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Examples of Patterns

* Extracting country names

— “X’is a country”

— Canada is a country in north America
— There's a sense in America that France is a country of culture
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Examples of Patterns

* Extracting country names

“ ”

— in north America

— There's a sense in America that of culture

* Extracting hyponymy relations

— “X'suchasY”
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Examples of Patterns

* Extracting country names

“ ”

— in north America

— There's a sense in America that of culture

* Extracting hyponymy relations

— “X'suchasY”

— Cut the stems of boxed flowers such as roses
— lam responsible for preparing a range of fruits such as apples
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Drawbacks of using Hand-Crafted Patterns

 Hand-crafted patterns are essentially rule-based



Drawbacks of using Hand-Crafted Patterns
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 Require human (experts) labor
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Drawbacks of using Hand-Crafted Patterns

 Hand-crafted patterns are essentially rule-based
* Require human (experts) labor

* Language-specific
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Drawbacks of using Hand-Crafted Patterns

Hand-crafted patterns are essentially rule-based
Require human (experts) labor
Language-specific

Poor coverage
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Flexible Patterns

* Patterns that are extracted automatically



Flexible Patterns

* Patterns that are extracted automatically

* Instead of defining a set of fixed patterns, we define meta-
patterns
— Structures of (potential) patterns

— High frequency words (HFWs) are used instead of fixed words
— E.g., “HFW, X HFW, Y”
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Flexible Patterns

Patterns that are extracted automatically

Instead of defining a set of fixed patterns, we define meta-
patterns
— Structures of (potential) patterns

— High frequency words ( ) are used instead of fixed words
— Eg.,“ X y”

Frequent and informative patterns are selected
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Extracted Flexible Patterns
“HFW, X HFW,, Y”

as XasyY
the X the Y
an X fromY
fromXtoY
aXhasyY
to X big¥Y
in X the Y
an XdoY
toXandyY
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Extracted Flexible Patterns
“HFW, X HFW,, Y”

as XasY

fromXtoY
aXhasyY

toXandyY
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Benefits of using Flexible Patterns

Flexible patterns are computed in a fully unsupervised
manner

— Do not require manual labor

— Language and domain independent

— Large coverage

Flexible patterns have been shown to be useful in a range of
NLP applications

— Snow et al., 2005; Davidov and Rappoport, 2006; 2008a,b;2009;
Davidov, Rappoport and Koppel 2007; Turney, 2008



Discovery of Semantic Noun Categories
Davidov and Rappoport, ACL 2006

e Cluster nouns into meaningful semantic groups



Discovery of Semantic Noun Categories
Davidov and Rappoport, ACL 2006

e Cluster nouns into meaningful semantic groups

* Use symmetric flexible patterns
— “XandVY’, “Xas well as Y’, “neither X nor Y”

— Both “cats and dogs” and “dogs and cats” appear in the corpus
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Discovery of Semantic Noun Categories
Davidov and Rappoport, ACL 2006

e Cluster nouns into meaningful semantic groups

* Use symmetric flexible patterns
— “XandY’, “Xas well as Y’, “neither X nor Y”

— Both “cats and dogs” and “dogs and cats” appear in the corpus

* Discovered categories include
— Chemical elements, university names, languages, fruits, fishing baits...
— Evaluation on English and Russian
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Discovery of Concept-Specific Relationships
Davidov, Rappoport and Koppel, ACL 2007

* Given a concept C, find other concepts with some relation to it
— (Italy) =» (Rome), (Italian), (Tuscany), ...



Discovery of Concept-Specific Relationships
Davidov, Rappoport and Koppel, ACL 2007

* Given a concept C, find other concepts with some relation to it
— (Italy) => ), ( ), (Tuscany), ...

* Find words that participate in flexible patterns along with C

— “Rome is the capital of Italy”, “Tuscany is a region in central Italy”
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Discovery of Concept-Specific Relationships
Davidov, Rappoport and Koppel, ACL 2007

* Given a concept C, find other concepts with some relation to it
— (Italy) => ), ( ), (Tuscany), ...

* Find words that participate in flexible patterns along with C

”

- is the capital of ” “Tuscany is a region in central

* Find other pairs of words for which the same relation exist

— “Paris is the capital of France”, “Henan is a region in central China”
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Discovery of Concept-Specific Relationships
Davidov, Rappoport and Koppel, ACL 2007

* Given a concept C, find other concepts with some relation to it
— (Italy) =» (Rome), ( ), (Tuscany), ...

Find words that participate in flexible patterns along with C

”n

— “Rome is the capital of Italy”, “Tuscany is a region in central Italy”

Find other pairs of words for which the same relation exist

— “Paris is the capital of France”, “Henan is a region in central China”

* Merge groups of similar concept pairs into general relations
— capital-of(X,Y), language-spoken-in(X,Y), region-in(X,Y)
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Enhancement of Lexical Concepts
Davidov and Rappoport, EMNLP 2009

* Enhance the semantic specification of given a concept



Enhancement of Lexical Concepts
Davidov and Rappoport, EMNLP 2009

 Enhance the semantic specification of given a concept

* Take a concept and translate it to (45!) various languages

— Disambiguate translations using web counts
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Enhancement of Lexical Concepts
Davidov and Rappoport, EMNLP 2009

Enhance the semantic specification of given a concept

Take a concept and translate it to (45!) various languages

— Disambiguate translations using web counts

Apply mono-lingual concept acquisition on translated concepts

Re-translate new specifications
— Merge results from different languages and
— Enhance original specification
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Enhancement of Lexical Concepts
Davidov and Rappoport, EMNLP 2009

Enhance the semantic specification of given a concept

Take a concept and translate it to (45!) various languages

— Disambiguate translations using web counts
Apply mono-lingual concept acquisition on translated concepts

Re-translate new specifications
— Merge results from different languages and
— Enhance original specification

Human Evaluation on English, Hebrew and Russian
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Sentence-Level Semantics

* Flexible patterns can also be used as sentence-level features

— Sentences that use the same flexible patterns share a semantic
property

* A generalization of word n-grams

— Capture potentially unseen word n-grams

* |dentify the content or “style” expressed in the sentence



Sarcasm Detection
Tsur, Davidov and Rappoport, ICWSM 2010

* Automatically detect sarcastic product reviews
— “Where am 1?” (GPS device)
— “Great for insomniacs” (book)
— “Defective by design” (ipod)



Sarcasm Detection
Tsur, Davidov and Rappoport, ICWSM 2010

 Automatically detect sarcastic product reviews
— “Where am 1?” (GPS device)
— “Great for insomniacs” (book)

— “Defective by design” (ipod)

* Use a semi-supervised classification algorithm
— Use both syntactic and flexible pattern classification features
— Flexible patterns are the most valuable features
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Sarcasm Detection
Tsur, Davidov and Rappoport, ICWSM 2010

 Automatically detect sarcastic product reviews
— “Where am 1?” (GPS device)
— “Great for insomniacs” (book)
— “Defective by design” (ipod)

e Use a semi-supervised classification algorithm
— Use both syntactic and flexible pattern classification features
— Flexible patterns are the most valuable features

e “Wcan’t XY Z. Great!”

— Kindle can’t read protected formats. Great!
— The new Ipod can’t play mp3 files. Great!
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Sentiment Analysis
Davidov, Tsur and Rappoport, Coling 2010

* Detect the sentiment of tweets



Sentiment Analysis
Davidov, Tsur and Rappoport, Coling 2010

e Detect the sentiment of tweets

* Use #hashtags and emoticons as sentiment labels
— Everyone needs to hear the new BANE song #awesome
— first batch of wild starter dough failed #sad
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Sentiment Analysis
Davidov, Tsur and Rappoport, Coling 2010

Detect the sentiment of tweets

Use #hashtags and emoticons as sentiment labels
— Everyone needs to hear the new BANE song
— first batch of wild starter dough failed

Classify tweets using both syntactic and flexible pattern

features
— Once again, flexible patterns provide the largest added value
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So Far

* Flexible patterns are a great tool for modeling semantics
— Words, word relations, sentences
— Fully unsupervised and language independent



Authorship Attribution of
Micro-Messages

Roy Schwartz*, Oren Tsurt,
Ari Rappoport* and Moshe Koppel”

*The Hebrew University, *Bar llan University
In proceedings of EMNLP 2013
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Authorship Attribution

* “To be, or not to be: that is the
question”

* ‘Romeo, Romeo! wherefore art
thou Romeo”

« “Taking a new step, uttering a new
word, is what people fear most ”

* “If they drive God from the earth,
we shall shelter Him underground.”

* “Before all masters, necessity
is the one most listened to, and
who teaches the best.”

* “The Earth does not want new
continents, but new men”
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Authorship Attribution

“Love all, trust a few, do wrong to none.”
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* Mendenhall, 1887
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History of Authorship Attribution

e Mendenhall, 1887

* Traditionally: long texts =
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History of Authorship Attribution

e Mendenhall, 1887

* Traditionally: long texts

* Recently: short texts
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Tweets as Candidates for Short Text

e Tweets are limited to 140 characters

* Tweets are (relatively) self contained
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Tweets as Candidates for Short Text

 Tweets are limited to 140 characters
 Tweets are (relatively) self contained

 Compared to standard web data sentences
— Tweets are shorter (14.2 words vs. 20.9)

— Tweets have smaller sentence length variance (6.4 vs. 21.4)
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Experimental Setup

 Methodology

— SVM with linear kernel; character n-grams, word n-gram, flexible
patterns features

* Experiments

— Varying training set sizes, varying number of authors, recall-precision
tradeoff

e Results

— 6.1% improvement over current state-of-the-art



Experimental Setup

 Methodology

— SVM with linear ker
patterns features

word n-gram, flexible

* Experiments

— Varying training set size per of authors, recall-precision

tradeoff

Scme Interesting Findings First

e Results

— 6.1% improvement over current state-of-the-art
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Interesting Finding

* Users tend to adopt a unique style when writing short texts
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Interesting Finding

* Users tend to adopt a when writing short texts

* K-signatures
— A feature that is unique to a specific author A

— Appears in at least k% of A’s training set, while not appearing in the
training set of any other user
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K-sighatures Examples

Signature Type

10%-signature

Examples

Character n-grams

¢ N~

REF oh ok "_" Glad you found it!

Hope everyone is having a good afternoon "_"

REF Smirnoff lol keeping the goose in the freezer "~

‘yew

gurl yew serving me tea nooch

REF about wen yew and ronnie see each other

REF lol so yew goin to check out tini’s tonight huh???
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K-signatures per User
100 authors, 180 training tweets per author

90 T T T T T T
----- k=2%
80_" _k=5°/0 H
| OO k=10%
IS k= 20% ||
- = 50%

HNumhber of Users

| |
0 5 10 15 20 25 30 35 40 45
Mumber of k-signatures per user
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More about K-sighatures

* Implicit?



More about K-sighatures

* Implicit?

e Style or content?
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More about K-sighatures

* Implicit?
e Style or content?

* Not appearing in the training set of any other user?
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More about K-sighatures

Implicit?
Style or content?
Not appearing in the training set of ?

Useful classification features

Semantic Representation using Flexible Patterns 25/38
@ Roy Schwartz



Structured Messages / Bots?

User

20%-signature

Examples

I’m listening to: Sigur R7?s ? Intro:

I’m listening to :

http://www.last.fm/music/Sigur+R %C3%B3s http://bit.ly/3XJHyb

I’m listening to: Tina  Arena ? In Command:

http://www.last.fm/music/Tina+Arena http://bit.ly/7q9E25

I’m listening to: Midnight Oil ? Under the Overpass:

http://www.last.fm/music/Midnight+Oil http://bit.ly/71H4cg

news now ( str)

#Hotel News Now(STR) 5 things to know: 27 May 2009: From the desks of
the HoteINewsNow.com editor... http://bit.ly/aZTZ0Oq #Tourism #Lodging

#Hotel News Now(STR) Five sales renegotiating tactics: As bookings rep-
resentatives press to reneg... http://bit.ly/bHPn2L

#Hotel News Now(STR) Risk of hotel recession retreats: The Hotel Indus-
try’s Pulse Index increases... http://bit.ly/a8EKrm #Tourism #Lodging

( NUM bids)
end date :

NEW PINK NINTENDO DS LITE CONSOLE WITH 21 GIFTS +
CASE: &#163;66.50 (13 Bids) End Date: Tuesday Dec-08-2009 17:..
http://bit.ly/7TuPt6V

Microsoft Xbox 360 Game System - Console Only - Working: US $51.99
(25 Bids) End Date: Saturday Dec-12-2009 13:.. http://bit.ly/8VgdTv

Microsoft Sony Playstation 3 (80 GB) Console 6 Months Old:
&#163;190.00 (25 Bids) End Date: Sunday Dec-13-2009 21:21:39 G..
http://bit.ly/TkwtDS
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Methodology

* Features
— Character n-grams, word n-grams, flexible patterns
— First authorship attribution to use flexible patterns

e Model

— Multiclass SVM with a linear kernel

e Ten-fold cross validation



Experiments

* Varying training set sizes
— 10 groups of 50 authors each, 50-1000 training tweets pet author



Experiments

* Varying training set sizes
— 10 groups of 50 authors each, 50-1000 training tweets pet author

* Varying numbers of authors
— 50-1000 authors, 200 training tweets per author
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Experiments

* Varying training set sizes
— 10 groups of 50 authors each, 50-1000 training tweets pet author

e Varying numbers of authors
— 50-1000 authors, 200 training tweets per author

* Recall-precision tradeoff

— “don’t know” option
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Varying Training Set Sizes
50 Authors (2% Random Baseline)
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Varying Training Set Sizes
50 Authors (2% Random Baseline)
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Varying Training Set Sizes
50 Authors (2% Random Baseline)

~70% accuracy
(1000 training
tweets per author)
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Varying Numbers of Authors

200 Training Tweets per Author
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Varying Numbers of Authors

200 Training Tweets per Author
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Recall-Precision Tradeoff

Precision (%)
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Recall-Precision Tradeoff

~90% precision,
>~60% recall

Precision (%)
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Recall-Precision Tradeoff

~90% precision,
>~60% recall

Precision (%)
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Comparison to Previous Work

- Naive Bayes (Boutwell, 2011)
B scAP (Layton et al., 2010)

B svm

701

65

551

50T

45

* We thank Robert Layton for providing us with his dataset
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Comparison to Previous Work

- Naive Bayes (Boutwell, 2011)
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6511 [ ]Char. N-grams + Flex. Patt. Feats.

Char. N-grams, Word N-grams &
I:I Flex. Patt. Feats.

60
55
50
45 — —
We thank Robert Layton for providing us with his dataset
Semantic Representation using Flexible Patterns 32/38

@ Roy Schwartz



Comparison to Previous Work

- Naive Bayes (Boutwell, 2011)
B scAP (Layton et al., 2010)

B svm

- Char. N-grams + Word N-grams
6511 [ ]Char. N-grams + Flex. Patt. Feats.
|:| Char. N-grams, Word N-grams &

707
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™ 6.1% improvement
60
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Flexible Patterns

* Examples of tweets written by the same author
— “the way I treated her”
— “half of the things I've seen”
— “the friends I have had for years”
— “in the neighborhood I grew up in”
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Flexible Patterns

 Examples of tweets written by the same author
— “the | treated her”

— “half of the I've seen”
— “the I have had for years”
— “in the I grew up in”

 No word n-gram feature is able to capture this author’s style
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Flexible Patterns

 Examples of tweets written by the same author
— “the | treated her”

— “half of the I've seen”
— “the I have had for years”
— “in the I grew up in”

 No word n-gram feature is able to capture this author’s style

n

* Author’s character n-grams (“the”, “1”) are unindicative
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Flexible Patterns

 Examples of tweets written by the same author
— “the | treated her”

— “half of the I've seen” £L JJ
— “the I have had for years” th e X I

— “in the I grew up in”

* No word n-gram feature is able to capture this author’s style

/A

e Author’s character n-grams (“the”, “1”) are unindicative
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Flexible Patterns

Examples of tweets written by the same author
— “the | treated her”

— “half of the I've seen” £L yy
— “the I have had for years” th e X I

— “in the I grew up in”

No word n-gram feature is able to capture this author’s style

/A

Author’s character n-grams (“the”, “1”) are unindicative

Flexible patterns obtain a statistically significant improvement
over our baselines
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Summary

* Accurate authorship attribution of very short texts

— 6.1% improvement over current state-of-the-art

* Many authors use k-signatures in their writing of short texts

— A partial explanation for our high-quality results

* Flexible patterns are useful authorship attribution features
— Statistically significant improvement



Authorship Attribution

“Love all, trust a few, do wrong to none.”
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Flexible Patterns and Syntax

* (Can flexible patterns represent syntax? Selectional
preferences?



Flexible Patterns and Syntax

* Can flexible patterns represent syntax? Selectional
preferences?

X will Y
X dig not y

XisY
X gave YtoZ
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Flexible Patterns and Syntax

* (Can flexible patterns represent syntax? Selectional
preferences?

x will Y

X ha sigg y X did pog y

Xymn Y
XisY 5
X ne Y pas X gave Y tO
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Flexible Patterns and Syntax

* Can flexible patterns represent syntax? Selectional

?
preferences: XX ha sido y
did n
X "f?h ne@yﬁ’pyas
* Use POS information? XW“R{ga\le Yt

— Ndid notV

XisY
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Flexible Patterns and Syntax

Can flexible patterns represent syntax? Selectional

?
preferences: XX ha .
did n
vib of Y
Use POS information? * M€Y pas
. il Yt
— N did not V AW R{gave
XisY

Use morphology?
— XisYing
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Summary

* Flexible patterns are a great tool for modeling semantics
— Words, word relations, sentences
— Fully unsupervised and language independent

« Stillalong way to go

— Model semantics using semantic features (represented by flexible
patterns)



‘

roys02@cs.huji.ac.il
http://www.cs.huji.ac.il/~roys02/
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