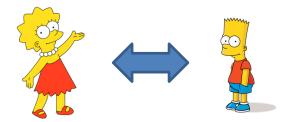
Semantic Knowledge Acquisition using Frequency Based Patterns

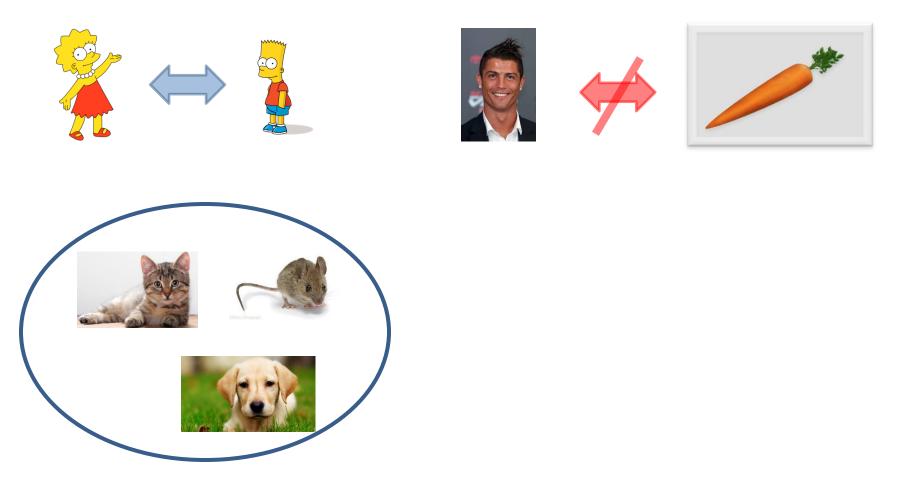
Roy Schwartz and Ari Rappoport

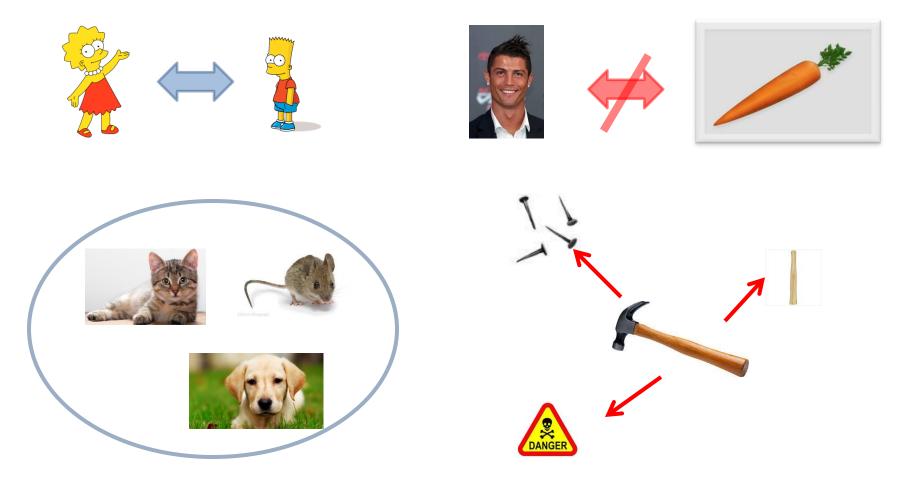
School of Computer Science and Engineering, The Hebrew University of Jerusalem, February 2015

The Catalonia-Israel Symposium on Lexical Semantics and Grammatical Structure



Semantic Knowledge Acquisition using Frequency Based Patterns @ Schwartz and Rappoport





Semantic Knowledge Acquisition using Frequency Based Patterns @ Schwartz and Rappoport

X gave Y to Z

Semantic Knowledge Acquisition using Frequency Based Patterns @ Schwartz and Rappoport

Disclaimer

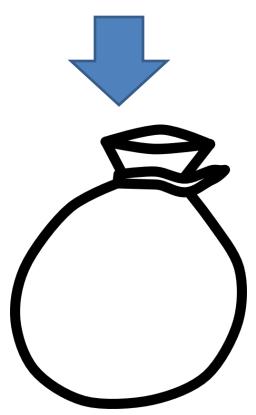
- We present a highly effective **computational** method
- We do not attempt to make any **linguistic** or **cognitive** claim
 - Nevertheless, there are some related issues, e.g., in construction grammar theories

Overview

- Introduction
 - Bag of words models
 - Lexico-syntactic Patterns
 - Lexico-syntactic Patterns 2.0: Flexible Patterns
- Latest results
 - Interpretable Word Embeddings Using Patterns Features (Schwartz, Reichart and Rappoport, under review)

John gave a present to Mary

John gave a present to Mary



John gave a present to Mary

John gave a present to Mary

Distributional Semantics (Harris, 1954)

Words that occur in similar context are likely to have similar meanings

Bag-of-Words Applications

- Represent words using their surrounding (word) contexts
 - Word similarity / association
 - Word clustering / classification

- Represent phrases / sentences by the words that they contain
 - Sentiment analysis
 - Spam filters

...

John gave a present to Marry

Semantic Knowledge Acquisition using Frequency Based Patterns @ Schwartz and Rappoport

John gave a present to Marry

John gave a present to Marry

Semantic Knowledge Acquisition using Frequency Based Patterns @ Schwartz and Rappoport

John gave a present to Marry

John's car broke down

John and Mary got married

John gave a present to Marry

John's car broke down

John and Mary got married

John gave a present to Marry

John's car broke down

John and Mary got married

John gave a present to Marry

John's car broke down

John and Mary got married

Lexico-syntactic Patterns Hearst, 1992

• Patterns of the form "X is a country", "X such as Y", etc.

Lexico-syntactic Patterns Hearst, 1992

- Patterns of the form "X is a country", "X such as Y", etc.
- Patterns potentially capture the context in which a word participates

Lexico-syntactic Patterns Hearst, 1992

- Patterns of the form "X is a country", "X such as Y", etc.
- Patterns potentially capture the context in which a word participates
- For example:
 - A *dog* participates in patterns (contexts) such as:
 - "X barks", "X has a tail", "X and cats", ...

- Extracting country names
 - "X is a country"

- Extracting country names
 - "X is a country"
 - Canada is a country in north America
 - There's a sense in America that **France is a country** of culture

- Extracting country names
 - "X is a country"
 - Canada is a country in north America
 - There's a sense in America that **France is a country** of culture
- Extracting hyponymy relations
 - "X such as Y"

- Extracting country names
 - "X is a country"
 - Canada is a country in north America
 - There's a sense in America that **France is a country** of culture
- Extracting hyponymy relations
 - "X such as Y"
 - Cut the stems of boxed *flowers such as roses*
 - I am responsible for preparing a range of **fruits such as apples**

Pattern Applications

- Acquiring the semantics of **single words**
 - Building semantic lexicons (Riloff and Shepherd, 1997; Roark and Charniak, 1998)
 - Semantic class learning (Kozareva et al., 2008)
- Acquiring the semantics of **relationships** between words
 - Discovering hyponymy (Hearst, 1992)
 - Discovering meronymy (Berland and Charniak, 1999)
 - Discovering antonymy (Lin et al., 2003)

Symmetric Patterns (SPs)

- X and Y
 - cats and dogs , dogs and cats
 - France and England, England and France
- X as well as Y
 - friends as well as colleagues, colleagues as well as friends
 - apples and oranges , oranges and apples

Symmetric Patterns (SPs)

- X and Y
 - cats and dogs , dogs and cats
 - France and England, England and France
- X as well as Y
 - friends as well as colleagues, colleagues as well as friends
 - apples and oranges , oranges and apples
- Words that co-occur in symmetric patterns are likely to be similar to one another
 - Widdows and Dorow, 2002; Dorow et al., 2005; Davidov et al., 2006,
 Schwartz et al., 2014

Limitations of Patterns

- The early works that adopted lexico-syntactic patterns used a set of **manually created** patterns
 - Require human (experts) labor
 - Language-specific

Patterns 2.0: Flexible Patterns

• Patterns that are extracted automatically

Patterns 2.0: Flexible Patterns

- Patterns that are extracted **automatically**
- Instead of defining a set of **fixed** patterns, we define **meta**patterns
 - Structures of (potential) patterns
 - High frequency words (HFWs) are used instead of fixed words
 - Content words (CWs) appear as wildcards
 - E.g., "*HFW*₁ *X HFW*₂ *Y*"

Patterns 2.0: Flexible Patterns

- Patterns that are extracted **automatically**
- Instead of defining a set of fixed patterns, we define metapatterns
 - **Structures** of (potential) patterns
 - High frequency words (HFWs) are used instead of fixed words
 - Content words (CWs) appear as wildcards
 - E.g., "*HFW*₁ *X HFW*₂ *Y*"

Frequent and informative patterns are automatically selected

Extracted Flexible Patterns

"*HFW*₁ *X HFW*₂ *Y*"

- as X as Y
- the X the Y
- an X from Y
- from X to Y
- a X has Y
- to X big Y
- in X the Y
- an X do Y
- to X and Y
- •

Extracted Flexible Patterns

"*HFW*₁ *X HFW*₂ *Y*"

- as X as Y
- the X the Y
- an X from Y
- from X to Y
- a X has Y
- to X big Y
- in X the Y
- an X do Y
- to X and Y
- .

Benefits of using Flexible Patterns

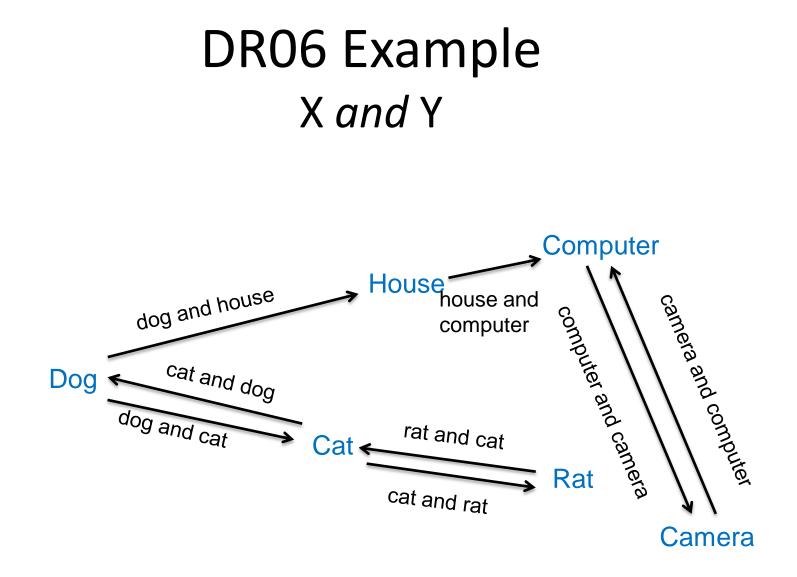
- Flexible patterns are computed **automatically**
 - Based solely on word frequencies
 - Do not require expert knowledge
 - Language and domain independent
 - Large coverage

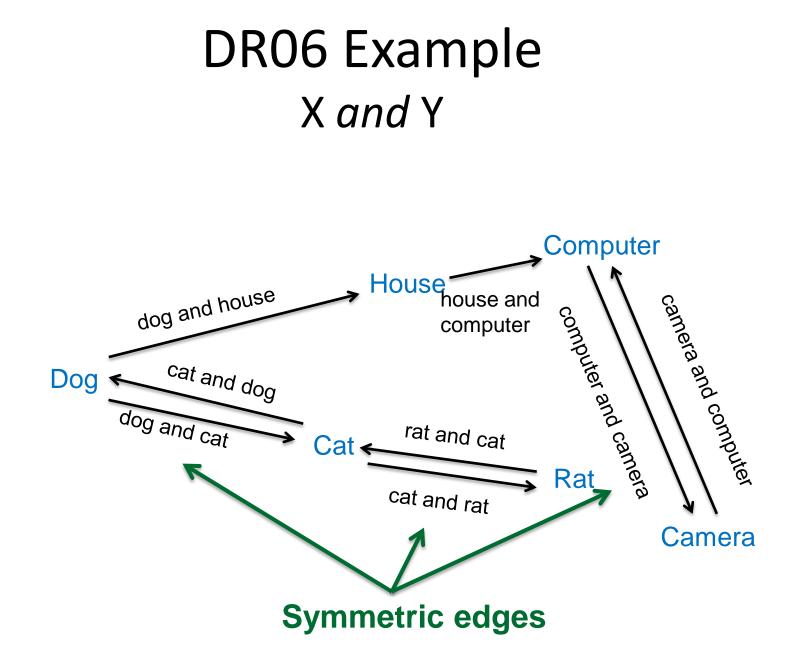
Automatic Discovery of Symmetric Patterns Davidov and Rappoport, ACL 2006

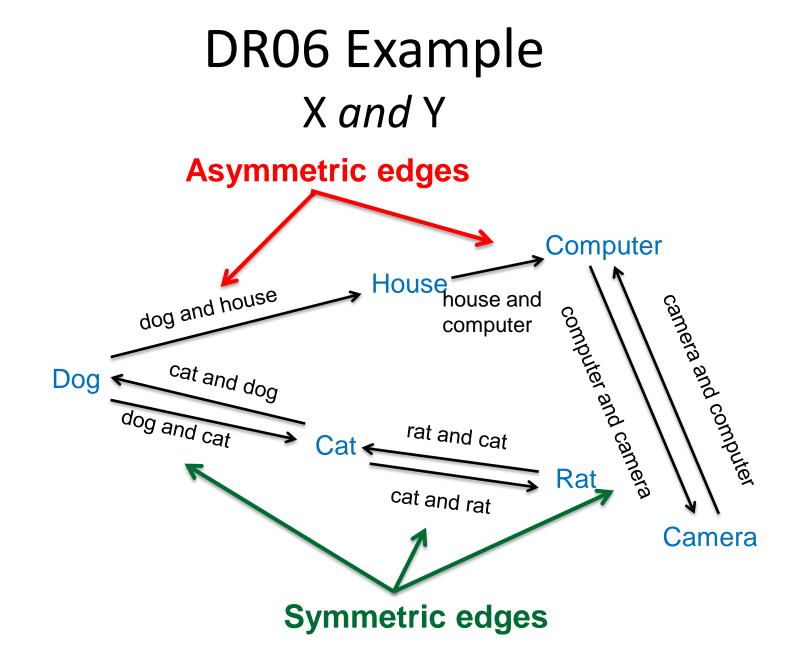
- An algorithm for extraction symmetric patterns from plain text (symmetric flexible patterns)
 - "X and Y", "X as well as Y", "neither X nor Y"
 - Input: a large corpus of plain text
 - **Output**: a set of symmetric patterns

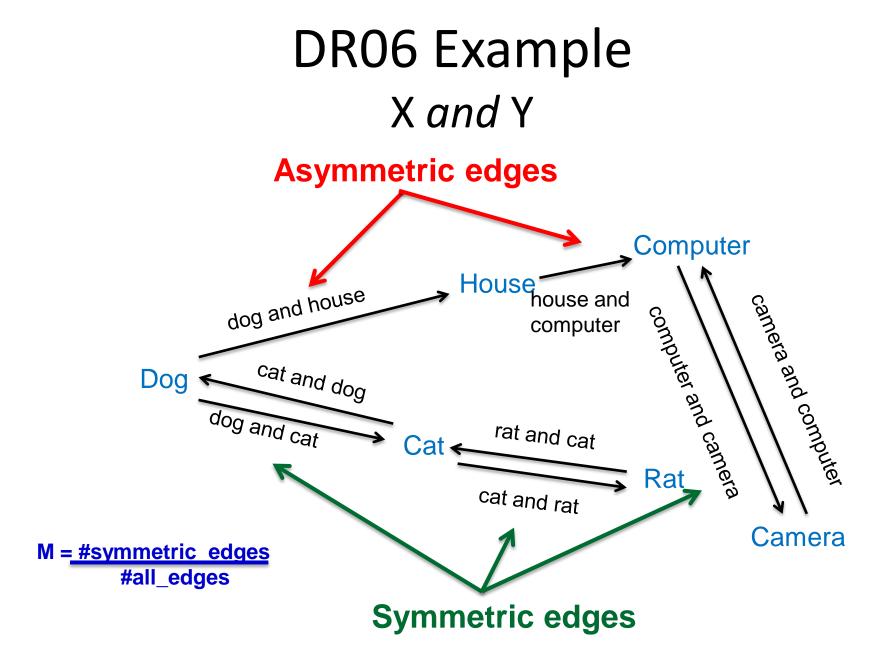
Automatic Discovery of Symmetric Patterns Davidov and Rappoport, ACL 2006

- An algorithm for extraction symmetric patterns from plain text (symmetric flexible patterns)
 - "X and Y", "X as well as Y", "neither X nor Y"
 - Input: a large corpus of plain text
 - **Output**: a set of symmetric patterns
- Application: cluster nouns into meaningful semantic groups Discovered categories include chemical elements, university names, languages, fruits, fishing baits...









Resulting Set of Patterns

- "X and Y"
- "X or Y"
- "X as well as Y"
- "X nor Y"
- "X and the Y"
- *"X or the Y"*
- *"X or a Y"*
- "X and one Y"

- *"from X to Y"*
- *"X rather than* Y"

Minimally Supervised Noun Classification Schwartz, Reichart and Rappoport, Coling 2014

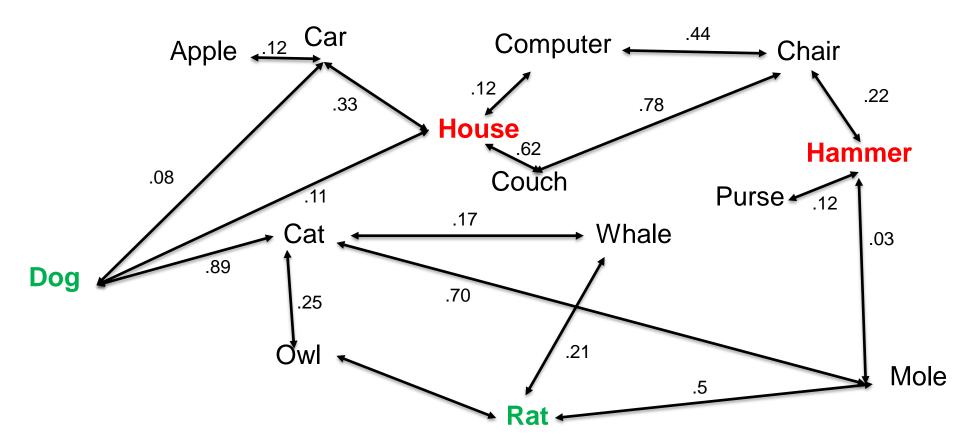
- Classify nouns into semantic categories
 - Animals, edibles, tools, ...

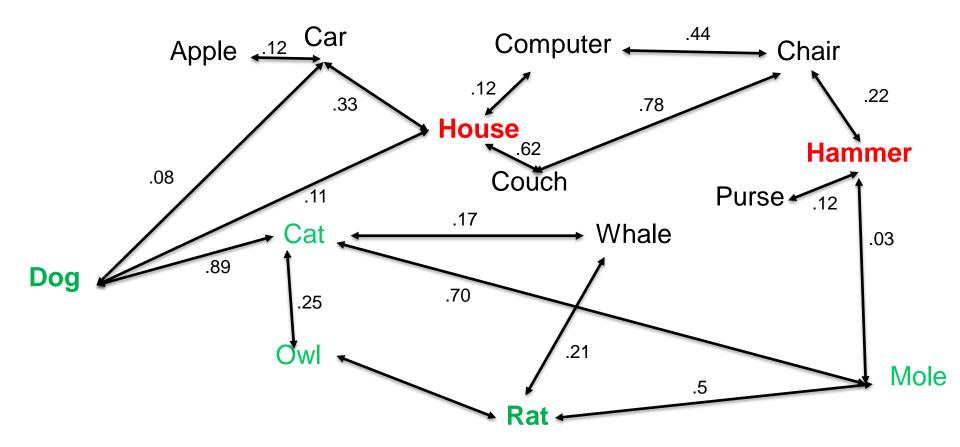
Minimally Supervised Noun Classification Schwartz, Reichart and Rappoport, Coling 2014

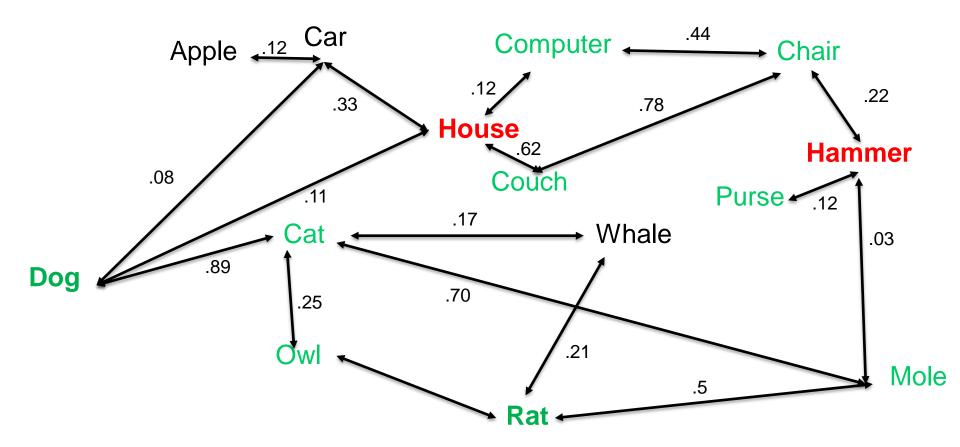
- Classify nouns into semantic categories
 - Animals, edibles, tools, ...
- For each semantic category, start with a small set of positive and negative examples
 - Typically only two positive examples and two negative examples

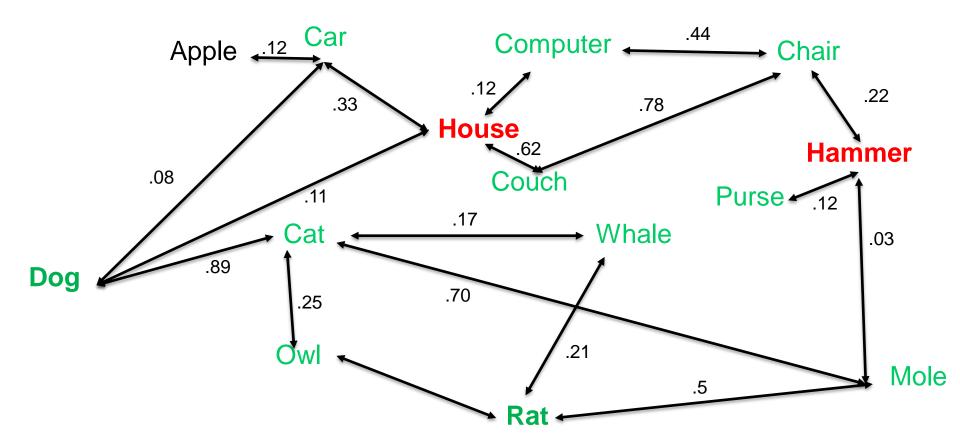
Minimally Supervised Noun Classification Schwartz, Reichart and Rappoport, Coling 2014

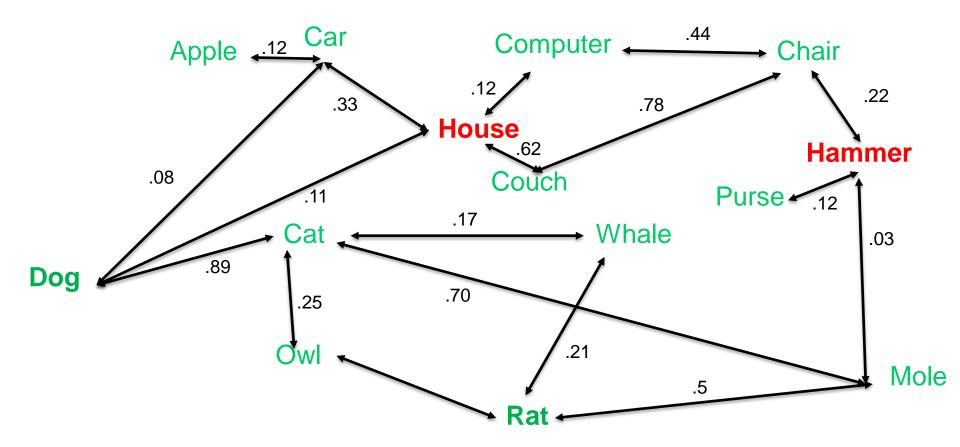
- Classify nouns into semantic categories
 - Animals, edibles, tools, ...
- For each semantic category, start with a small set of positive and negative examples
 - Typically only two positive examples and two negative examples
- Link words that co-occur in **symmetric flexible patterns**

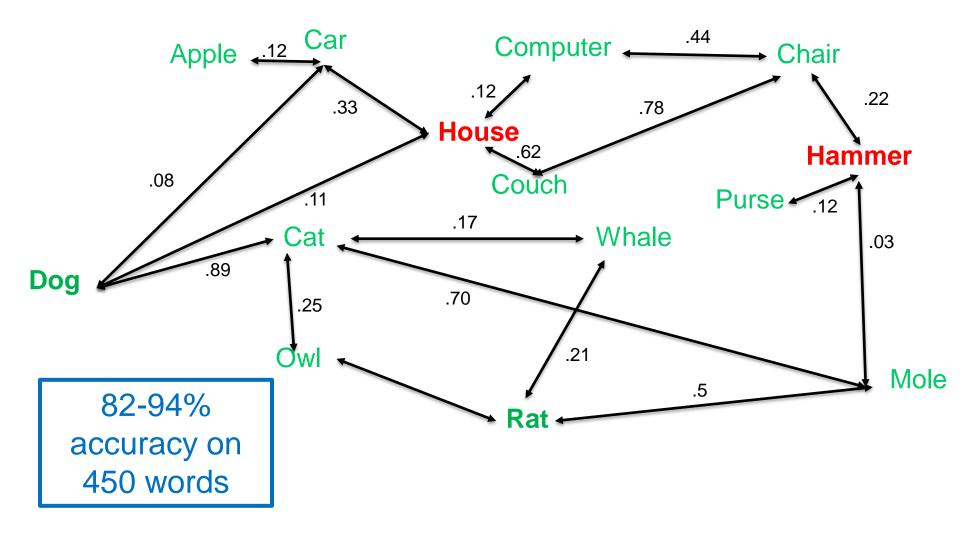










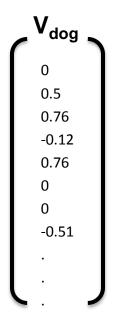


Interpretable Word Embeddings Using Pattern Features

Roy Schwartz, Roi Reichart and Ari Rappoport (Under Revision)

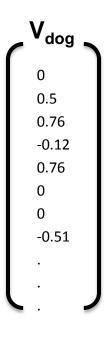
Vector Space Models

 Representations of words as vectors of features (numbers)



Vector Space Models

- Representations of words as vectors of features (numbers)
- Features are usually bag-of-words counts
 - Directly or via some mathematical transformation



Vector Space Models

- Representations of words as vectors of features (numbers)
- Features are usually bag-of-words counts
 - Directly or via some mathematical transformation
- In recent years, deep neural network models have been applied to generate accurate vector representations (aka word embeddings)
 - Bengio, 2003; Collobert, 2008 & 2011, word2vec (Mikolov 2013{a,b,c})

 V_{dog}

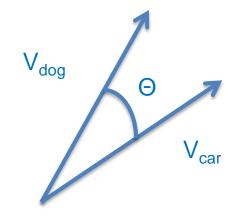
0 0.5 0.76 -0.12

0.76 0

0 -0.51

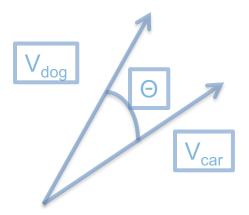
Word Embeddings (Cool!) Properties

• (accurate) Word similarity

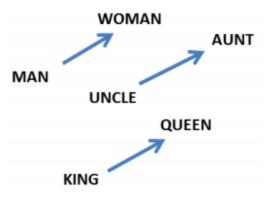


Word Embeddings (Cool!) Properties

• (accurate) Word similarity



• Word analogy



(Mikolov et al., 2013)

Word Embeddings Applications

- Information Retrieval
- Document Classification
- Question Answering
- Named Entity Recognition
- Parsing

...

•

Word Embeddings Limitations

- Resulting vectors are highly **uninterpretable**
 - Sequences of several hundred numbers
 - Not clear what each number represents

Word Embeddings Limitations

- Resulting vectors are highly **uninterpretable**
 - Sequences of several hundred numbers
 - Not clear what each number represents
- Restricted to a limited set of relations Similarity/Relatedness, some analogies
 - Other relations are not supported: hyponymy (animal → dog), antonymy (big/tall), etc.

Symmetric Patterns to Word Embeddings

• Input: a large corpus C (8G words)

Symmetric Patterns to Word Embeddings

• Input: a large corpus C (8G words)

Extract a set of SPs P using the DR06 algorithm

Symmetric Patterns to Word Embeddings

• Input: a large corpus C (8G words)

Extract a set of SPs *P* using the DR06 algorithm

- Traverse C, extract all instances of all p in P
 - cats and dogs

...

- House and the rooms
- from France to England

Symmetric Patterns to Word Embeddings (2)

 For each word w in the lexicon, build a count vector (V_w) of all other words that co-occur with w in SPs

Symmetric Patterns to Word Embeddings (2)

- For each word *w* in the lexicon, build a count vector (V_w) of all other words that co-occur with *w* in SPs
- orange

. . .

- 1. ... apples and oranges ...
- 2. ... oranges as well as grapes
- K. ... neither banana nor orange

China

. . .

- 1. ... Japan or China ...
- 2. ... China rather than Korea
- M. ... Vietnam and China ...

Symmetric Patterns to Word Embeddings (3)

 Compute the Positive Pointwise Mutual Information (PPMI) between each pair of words

$$PMI(w_i, w_j) = \log\left(\frac{p(w_i, w_j)}{p(w_i)p(w_j)}\right)$$

$$PPMI(w_i, w_j) = \begin{cases} PMI(w_i, w_j) < 0:0\\ otherwise: PMI(w_i, w_j) \end{cases}$$

The Result: Interpretable Word Embeddings based on Symmetric Patterns

PPMI(dog,house) PPMI(dog,mouse) PPMI(dog,zebra) PPMI(dog,wine) PPMI(dog,cat) PPMI(dog,dolphin) PPMI(dog,bottle) PPMI(dog,pen)

The Result: Interpretable Word Embeddings based on Symmetric Patterns

PPMI(dog,mouse)
PPMI(dog,zebra)
PPMI(dog,wine)
PPMI(dog,cat)
PPMI(dog,dolphin)
PPMI(dog,bottle)
PPMI(dog,pen)

\/sp

PPMI(dog,house)

 $|V^{SP}_{w}| = -500K$

 $E_w(|nonzero(V^{SP}_w)|) = \sim 50$

• Our model is interpretable in two different manners

- Our model is interpretable in two different manners
- We **understand** what each feature represents
 - The similarity score between the target word and another word w

- Our model is interpretable in two different manners
- We **understand** what each feature represents
 - The similarity score between the target word and another word w
- We understand how the value of each feature is **generated**
 - The co-occurrence score of the target word and *w* in symmetric patterns

- Our model is interpretable in two different manners
- We **understand** what each feature represents
 - The similarity score between the target word and another word w
- We understand how the value of each feature is **generated**
 - The co-occurrence score of the target word and *w* in symmetric patterns
- Interpretability can be exploited to **improve our model**

big / small

big / small

- Antonyms appear in similar contexts
 - Here is a X car
 - I live in a X house

big / small

- Antonyms appear in similar contexts
 - Here is a X car
 - I live in a X house

 \rightarrow In typical word embeddings, $\cos(V_{big}, V_{small})$ is high

big / small

- Some symmetric patterns are indicative of antonymy*
 - "either X or Y" (either big or small), "from X to Y" (from poverty to richness)

* Lin et al. (2003)

• A variant of our model that assigns dissimilar vectors to antonym pairs

- A variant of our model that assigns dissimilar vectors to antonym pairs
- For each word *w*, compute V_w^{AP} similarly to V_w^{SP} , but using the set of antonym patterns

$$V_{w}^{\rm AP'} = V_{w}^{\rm SP} - \beta \cdot V_{w}^{\rm AP}$$

\clubsuit β is tuned using a development set

Experiments

- Word similarity task
 - Experiments with the SimLex999 dataset (Hill et al., 2014)
 - 999 word pairs, each assigned a similarity score by human annotators
 - $f_{<\text{model}>}(w_i, w_j) = \cos(V^{<\text{model}>}_{wi}, V^{<\text{model}>}_{wj})$
 - Evaluation results is the Spearman's ρ score between model and human judgments
 - Numbers are average scores of 10 folds of 25% (dev) / 75 (test) partitions
 - Baselines: 2 interpretable baselines, 3 state-of-the-art, non-interpretable baselines

Interpretable?	Model	Spearman's ρ
	GloVe	0.426
Non-interpretable	CBOW	0.43
	skip-gram	0.462
	BOW	0.423
Interpretable	NNSE	0.455
	$SP^{(+)}$	0.517

Experiments

- Word similarity task
 - Experiments with the SimLex999 dataset (Hill et al., 2014)
 - 999 word pairs, each assigned a similarity score by human annotators
 - $f_{<\text{model}>}(w_i, w_j) = \cos(V^{<\text{model}>}_{wi}, V^{<\text{model}>}_{wj})$
 - Evaluation results is the Spearman's ρ score between model and human judgments
 - Numbers are average scores of 10 folds of 25% (dev) / 75 (test) partitions
 - Baselines: 2 interpretable baselines, 3 state-of-the-art, non-interpretable baselines

Interpretable?	Model	Spearman's ρ
	GloVe	0.426
Non-interpretable	CBOW	0.43
	skip-gram	0.462
	BOW	0.423
Interpretable	NNSE	0.455
	$SP^{(+)}$	0.517

Experiments

- Word similarity task
 - Experiments with the SimLex999 dataset (Hill et al., 2014)
 - 999 word pairs, each assigned a similarity score by human annotators
 - $f_{<\text{model}>}(w_i, w_j) = \cos(V^{<\text{model}>}_{wi}, V^{<\text{model}>}_{wj})$
 - Evaluation results is the Spearman's ρ score between model and human judgments
 - Numbers are average scores of 10 folds of 25% (dev) / 75 (test) partitions
 - Baselines: 2 interpretable baselines, 3 state-of-the-art, non-interpretable baselines

Interpretable?	Model	Spearman's ρ
	GloVe	0.426
Non-interpretable	CBOW	0.43
	skip-gram	0.462
	BOW	0.423
Interpretable	NNSE	0.455
	$SP^{(+)}$	0.517

Word Pair	SP		SG
word I an	+AN	-AN	50
new - old	1	6	6
narrow - wide	1	7	8
necessary - unnecessary	2	2	9
bottom - top	3	8	10
absence - presence	4	7	9
receive - send	1	9	8
fail - succeed	1	8	6

Joint Model

$f_{joint}(w_{i},w_{j}) = \gamma \cdot f_{SP}(w_{i},w_{j}) + (1 - \gamma) \cdot f_{skip-gram}(w_{i},w_{j})$

Interpretable?	Model	Spearman's ρ
Non-interpretable	GloVe	0.426
	CBOW	0.43
	skip-gram	0.462
	BOW	0.423
Interpretable	NNSE	0.455
	$SP^{(+)}$	0.517
Joint		0.563
Average Huma	n Score	0.651

 $\diamond \gamma$ determined using a development set

Joint Model

$f_{joint}(w_{i},w_{j}) = \gamma \cdot f_{SP}(w_{i},w_{j}) + (1 - \gamma) \cdot f_{skip-gram}(w_{i},w_{j})$

Interpretable?	Model	Spearman's ρ
Non-interpretable	GloVe	0.426
	CBOW	0.43
	skip-gram	0.462
Interpretable	BOW	0.423
	NNSE	0.455
	$SP^{(+)}$	0.517
Joint		0.563
Average Hum	an Score	0.651

 $\diamond \gamma$ determined using a development set

Patterns

- Highly effective **computational** tool
 - High quality results (either unsupervised or very weakly supervised)
- Simple to understand and implement
 - Can be implemented in computer hardware

Patterns and Language Acquisition

 Children learn linguistic structures, among others, through pattern-finding in their discourse interactions with others (Tomasello, 2003)

Summary

- Patterns are useful for extracting semantic information
- Symmetric patterns are as useful (actually more useful) as state-of-the-art word embeddings in modeling word similarity
 - 5-9.4 points gap
- Patterns can capture relations that word embeddings cannot
 - Antonymy
- SPs can be combined along with state-of-the-art embeddings to create an even more accurate representation
 - 10.1 points higher than state-of-the-art

Current Work: Asymmetry of Symmetric Patterns

- Symmetric patterns are not really symmetric
 - good or bad >> bad or good, more or less >> less or more
 - Order of binomials (Bunin Benor and Levy, 2006)
- In a large majority of the cases, positive word comes before negative
- Application: polarity induction

<u>roys02@cs.huji.ac.il</u> <u>http://www.cs.huji.ac.il/~roys02/</u>

Semantic Knowledge Acquisition using Frequency Based Patterns @ Schwartz and Rappoport