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Model Robustness
Wang et al. (2022)
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https://arxiv.org/abs/2112.08313
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Visual Question Answering

• VQA dataset

• Antol et al. (2015)


• Input: an image and a question

• What sport is this man playing?

• Do you see a shadow?


• Output: answer

• Tennis, yes
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Spurious Correlations in VQA

• 40% of the questions in VQA starting 
with “What sport is this” are answered 
with “tennis”


• “yes” is the  answer to 87% of the 
questions in the VQA dataset starting 
with “Do you see a” 


• Zhang et al. (2016); Goyal et al. (2017)  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ROC Story Cloze Task
Mostafazadeh et al. (2016)

• A story comprehension task


• The task: given a story prefix, distinguish between the coherent and the 
incoherent endings
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Spurious Correlations in ROC
S. et al. (2017); Cai et al. (2017)

• Train a binary classifier on the endings only 
• Ignoring the story prefix
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Other Spurious Correlations

• Other tasks

• NLI (Gururangan, …, S. et al., 2018; Poliak et al., 

2018; Tsuchiya, 2018)

• Question answering (Kaushik & Lipton, 2018)

• Winograd Schema (Elazar et al., 2021)

• …
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Dataset Balancing
Augmentation

• The key idea: balance-out spurious correlations


• Vision and Language datasets 

• VQA 2.0 (Goyal et al., 2017)

• GQA (Hudson and Manning, 2019)


• Language only

• ROC stories cloze task 1.5 (Sharma et al., 2018)
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https://arxiv.org/abs/1612.00837
https://arxiv.org/abs/1902.09506
https://aclanthology.org/P18-2119/


Filtering

• Filter-out “easy” examples from existing datasets

• Typically using an adversarial model


• A widely used approach

• SWAG (Zellers, Bisk, S. & Choi (2018); Record (Zhang et al., 2018); WinoGrande 

(Sakaguchi et al., 2020)

13

Zellers, Bisk, S. & Choi (2018); Sakaguchi et al. (2020)

https://arxiv.org/abs/1808.05326
https://arxiv.org/abs/1810.12885
https://arxiv.org/abs/1907.10641
https://arxiv.org/abs/1808.05326
https://arxiv.org/abs/1907.10641


Filtering as Balancing

• As the adversarial model grows, models will pick up subtler correlations


• At the extreme, the result is a fully balanced dataset
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Every Correlation is Spurious!
Gardner et al. (2021)

• Every simple correlation between single word features and output labels is 
spurious


• Competent datasets: the marginal probability for every feature is uniform over 
the class label


• ∀xi, y ∈ Y, p(y |xi) =
1

|Y |
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https://arxiv.org/abs/2104.08646
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Reality

Benchmark Baseline Shortly after

SWAG (Zellers, Bisk, S. & Choi, 2018) 52% 86% (Devlin et al., 2018)

DROP (Dua et al., 2019) 47 F1 88 F1 (Chen et al., 2020)

HellaSWAG (Zellers et al., 2019) 47% 93% (He et al., 2020)

WinoGrande (Sakaguchi et al., 2020) 53% AUC 88% AUC (Raffel et al., 2020)
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https://arxiv.org/abs/1808.05326
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1903.00161
https://aclanthology.org/2020.emnlp-main.549/
https://arxiv.org/abs/1905.07830
https://arxiv.org/abs/2006.03654
https://arxiv.org/abs/1907.10641
https://arxiv.org/abs/1910.10683
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Balancing too Little is Insufficient 

• The dataset is balanced for unigrams


• But still contains spurious bigrams features

• E.g., “very good”, as “not very good” yields 

negative sentiment
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Balancing too Little is Insufficient 

• The same example can apply with larger n’s


• More broadly, any phrase or feature combination can alter its meaning in 
some context

• Negation, sarcasm, humor, …


• As a result, balancing too little is insufficient for mitigating all spurious 
correlations
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Too much Balancing Leaves Nothing 

The dataset is also balanced for unigrams


But if we balance it for bigrams, we are left 
with no learnable signal
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Too much Balancing Leaves Nothing 

• Consider an NLP dataset D with maximal length n 

• By definition, balancing any combination of up to n features (including) leaves 
no learnable signal in D 

• Conclusion: balancing too much is not helpful either
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Does a sweet-spot exist between 
balancing too little and too much?
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Is Balancing even Desired? 

• Dataset balancing prevents models from having a fallback option in cases of 
uncertainty

• As these would evidently cause it to make mistakes on some inputs


• But fallback meanings are crucial for language understanding, as contexts are 
often underspecified 

• Graesser (2013)
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Is Balancing even Desired? 

• Especially relevant for world knowledge and 
common-sense knowledge

• Joe Biden is the president of the US

• A person is typically happy when they receive a 

present


• As a result, dataset balancing is undesired
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Is dataset balancing the right way forward?
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Mitigating Spurious Correlations

• Modify the model

• Adversarial networks (Belinkov et al., 2019; Grand and Belinkov, 2019; Wang et al., 2019; 

Cadene et al., 2019)

• Model ensembles (Clark et al., 2019,2020; He et al., 2019; Bahng et al., 2020)


• Integrate causality into our models

• Eisenstein (2022); Joshi et al. (2022)


• Build better benchmarks
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https://arxiv.org/abs/2204.04487
https://arxiv.org/abs/2210.14011


Challenge Sets

• Challenge dataset (aka adversarial datasets) intentionally aim to mislead the 
model

• The goal is to uncover specific model weaknesses

31



HANS
McCoy et al. (2019)
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https://aclanthology.org/P19-1334/


Challenge Sets

• Test various Types of Capabilities 

• Shift in distribution


• Ignoring noise


• Handling misspellings


• Handling negation


• Handling temporal modifications


• Applied to a Range of NLP Tasks

• NLI


• (Visual-/)Question answering


• Machine Translation


• Text classification


• …
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Fight Bias with Bias
Reif & S. (Findings of ACL 2023)

• Balancing only hides the problem

• Some biases remain hidden in the data


• We want models that are robust to such biases


• Let’s amplify the biases in the data
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https://arxiv.org/abs/2305.18917


Amplify Biases???

• Could we ever create datasets that don’t contain exploitable biases?

• Linzen et al. (2020); S. & Stanovsky (2022)


• Biases “hide” in hard, filtered training sets 
⇒ Harder to evaluate impact on models


• Datasets with amplified biases will create a better testbed to develop 
methods for mitigating them
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https://doi.org/10.18653/v1/2020.acl-main.465
http://arxiv.org/abs/2204.12708


Train Set Test Set

❌

✅

✅a great achievement

filled with corny jokes

a disaster of a film

two hours of non-stop jokes

a great disaster flick

 full of corny dialogue ✅

✅

🤔

… …

🤔

✅

✅

❌

Don’t Filter, Amplify
Bias-amplified Splits: Biased Training, Anti-biased Test

3838
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Biased? Biased?
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Definitions of Biased and Anti-biased

• Dataset cartography

• Swayamdipta, S. et al. (2020)


• Partial-input baselines

• Gururangan, …, S. et al (2018); Poliak et al. (2018)


• Minority examples 

• A method we introduce to detect minority examples
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https://arxiv.org/abs/2009.10795
http://arxiv.org/abs/1803.02324
https://aclanthology.org/S18-2023/


Test Set

Training set• Cluster training set using the model 
representation


• Detect majority labels within each cluster

• Use them as our new “biased” training set


• Deduce test set minority examples by 
nearest neighbor in the training set

• Use them as our new test set


Detecting Minority Examples
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Results
MultiNLI; ROBERTA-large

Tr
ai
n

• Most validation data is biased


• Automatic challenge sets are hard


• Bias amplification makes data harder


• Automatic challenge sets are as hard 
as HANS
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What about LLMs?

• The web is biased too!

• Birhane et al., 2021; Dodge et al., 2021


• Robustness is a major issue in LLMs too

• Liu et al. (2021); Lu et al. (2022); Maus et al. (2023)


• Balancing is even less practical there


• We need robust modeling!

https://arxiv.org/abs/2110.01963
https://aclanthology.org/2021.emnlp-main.98
https://arxiv.org/abs/2101.06804
https://arxiv.org/abs/2104.08786
https://arxiv.org/abs/2302.04237
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WHOOPS!

• A dataset of “weird” images

• Generated by designers using image generation tools


• Humans both 

• Easily understand what’s going on in the image

• Can generate explanations of what’s weird in the 

image 

• Machines do much poorly

Bitton-Guetta, Bitton, ... , S. (ICCV 2023)

Back

https://arxiv.org/abs/2303.07274

