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• Background 

– Word embeddings are great! 

• Problem 

– They also suffer from major limitations 

• Solution 

– Pattern-based methods overcome many of these 
limitations 



Publications 

• Symmetric Patterns: Fast and Enhanced Representation of Verbs and Adjectives 

(Schwartz, Reichart & Rappoport, in review) 

•  Symmetric Pattern Based Word Embeddings for Improved Word Similarity Prediction 

(Schwartz, Reichart & Rappoport, CoNLL 2015) 

•  How Well Do Distributional Models Capture Different Types of Semantic Knowledge? 

(Rubinstein, Levi, Schwartz & Rappoport, ACL 2015) 

• Minimally Supervised Classification to Semantic Categories using Automatically 

Acquired Symmetric Patterns (Schwartz, Reichart & Rappoport, COLING 2014) 

• Authorship Attribution of Micro-Messages (Schwartz, Tsur, Rappoport & Koppel, 

EMNLP 2013) 

• Learnability-based Syntactic Annotation Design (Schwartz, Abend & Rappoport, 

COLING 2012)  

• Neutralizing Linguistically Problematic Annotations in Unsupervised Dependency 

Parsing Evaluation (Schwartz, Abend, Reichart & Rappoport, ACL 2011) 

3 Pattern-based Solutions to Limitations of Leading Word 
Embeddings @ Roy Schwartz 



• Design vector representations of linguistic units (words, 
phrases, …) 

• Distributional Semantics hypothesis (Harris, 1954) 
– Words that occur in similar contexts are likely to have similar meanings 
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•

•

• Most embedding models use bag-of-words contexts 
– Without taking into account order or directionality 
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friend 
is 

good 

a Mary 

of 

John 

•

•

• Most embedding models use bag-of-words contexts 
– Without taking into account order or directionality 

   John is a good friend of Mary 
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Embeddings @ Roy Schwartz 

Word Embeddings are Great, But… 

• Great results on word relatedness, word analogy, synonym 
detection, etc. (Baroni et al., 2014) 

• Also useful for downstream applications 
– Sentiment Analysis (Maas et al., ACL 2011, Socher et al., EMNLP 2013) 

– Parsing (Socher et al, EMNLP 2012; Lazaridou et al., EMNLP 2013) 
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–
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• But … 

• They also suffer from major limitations 
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Limitations of Word Embeddings 
50 shades of “Relatedness” 
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• Failure to distinguish between correlation and similarity 
(Schwartz et al., CoNLL 2015) 
– cup/coffee vs. cup/glass 

– dog/leash vs. dog/cat 

– car/wheel vs. car/train 
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•

–

–

–

• Failure to distinguish between similarity and (dis)similarity 
(Schwartz et al., CoNLL 2015) 
– good/great vs. good/bad 

– big/large vs. big/small 
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•

–

–

–

•

–

–

• Failure to capture hyponyms and entailment  
(Levy et al., NAACL 2015) 
– dog/animal, flu/fever 

 



Limitations of Word Embeddings 
No Attributive Knowledge 
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• Word embeddings are very good at capturing taxonomic 
properties 
– cat, dog and elephant belong to the same class (animals) 
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Limitations of Word Embeddings 
No Attributive Knowledge 
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•

–

• They are much worse at capturing attributive properties 
(Rubinstein, Levi, Schwartz and Rappoport, ACL 2015) 
– bananas, the sun and school buses share the same color (yellow) 
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•

–

• They are much worse at capturing attributive properties 
(Rubinstein, Levi, Schwartz and Rappoport, ACL 2015) 
– bananas, the sun and school buses share the same color (yellow) 
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• Verbs received relatively little attention in the word 
embedding literature  
– Significantly less than nouns 

– Very few verb datasets 
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Limitations of Word Embeddings 
Failure to Model Verb Similarity 



•

–

–

• Word embeddings perform substantially worse on verb 
similarity, as compared to noun similarity  
(Schwartz et al., CoNLL 2015; Schwartz et al., in review) 
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Failure to Model Verb Similarity 



•

–

–

• Word embeddings perform substantially worse on verb 
similarity, as compared to noun similarity  
(Schwartz et al., CoNLL 2015; Schwartz et al., in review) 

• Spearman’s ρ scores on SimLex999 (Hill et al., 2014): 
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Verbs Nouns Model 

0.163 0.377 GloVe (Pennington et al., 2014) 

0.307 0.501 word2vec skip-gram (Mikolov et al., 2013)  

Limitations of Word Embeddings 
Failure to Model Verb Similarity 



• They do not support distinctions finer than “relatedness” 
Similarity, dissimilarity, hyponymy, entailment … 

• They fail to capture attributive similarity  
Bananas and school buses are yellow, elephants and mountains are large 

• Their suffer from low performance on verb similarity 

9 Pattern-based Solutions to Limitations of Leading Word 
Embeddings @ Roy Schwartz 

Recap: 
Shortcomings of Word Embeddings 



Solution:  
Lexico-syntactic Patterns 

Pattern-based Solutions to Limitations of Leading Word 
Embeddings @ Roy Schwartz 

• Patterns are sequences of words and wildcards  
– “X and Y” 

– “X is a Y” 

– “wow, what a great X!” 
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Solution:  
Lexico-syntactic Patterns 

Pattern-based Solutions to Limitations of Leading Word 
Embeddings @ Roy Schwartz 

• Hearst (1992) introduced the concept of patterns 
– Used “X such as Y” to detect hyponyms (“animals such as dogs”) 

– This method is still considered one of the most efficient ways of 
extracting hyponyms 
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Relation Extraction Using Patterns 
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11 

• Patterns were found useful for recognizing other coarse-
grained relations: 
– Antonyms (opposite meaning, Lin et al., 2003) 

– General verb relations (happens-before, stronger-than, Chklovski and 
Pantel, 2004) 

• Patterns can also represent a wide range of semantic relations 
from different domains 
– Entertainment: stars-in-film (Etzioni et al., Artificial Intelligence 2005) 

– Geography: capital-of, river-in (Davidov, Rappoport & Koppel, ACL 2007) 

– Technology: accessory-of (Davidov & Rappoport, ACL 2008) 
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• Symmetric Patterns 
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X Y
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beds sofas 

sofas beds
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*singer  Rihanna 



 

 

 

 

 

• Words that co-occur in symmetric patterns often take the same 
semantic role 
– John and Mary went to school 

– Is it better to walk or run? 

– Jane is smart as well as funny 

 

Symmetric Patterns 
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X Y

beds sofas 

sofas beds
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• Symmetric patterns have shown useful for capturing different 
aspects of word similarity in semantic tasks 
– Lexical acquisition (Widdows & Dorow, COLING 2002),  

– Semantic clustering (Davidov & Rappoport, ACL 2006) 

– Construction of connotative lexicon (Feng et al., ACL 2013) 

– Minimally supervised word classification (Schwartz et al., COLING 2014) 
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Symmetric Patterns for Word Similarity 
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•

–

–
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Symmetric Patterns for Word Similarity 

13 

Symmetric-Pattern-based 
methods can overcome many 
of the limitations of general 
word embeddings! 
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Similarity vs. Relatedness 

14 

• Recall: 
– Related words are not necessarily similar (cow/milk) 

– Word embeddings (based on bag-of-words context) fail to make this 
distinction 
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Similarity vs. Relatedness 
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#instances Example Type 

Symmetric Patterns Bag-of-words 

145 2418 (car,train)   
similar 1857 6324 (coffee,tea)  

2090 3645 (dog,cat)  

3 333 (car,wheel)  
related 6 7247 (coffee,cup) 

4 2837 (dog,walking) 

–
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Symmetric Patterns as Word Embeddings Contexts 
Schwartz, Reichart and Rappoport, CoNLL 2015 
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  The goal: 

Distinguish between similarity and relatedness 
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Symmetric-pattern embeddings distinguish 
between similarity and relatedness 

 



Similarity vs. Dissimilarity 

• Recall: 
– Word embeddings fail to distinguish between similar and opposite 

pairs of words (good/great vs. good/bad) 
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Similarity vs. Dissimilarity 

• Some patterns are indicative of antonymy (Lin et al. 2003) 
– Antonym patterns = { “either X or Y”, “from X to Y” } 

– either big or small, from poverty to richness 
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Similarity vs. Dissimilarity 
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#instances Example Type 

Antonym Patterns Symmetric Patterns Bag-of-words 

0 0 1208 (bad,dream)  related 

0 114 561 (bad,evil)  similar 

80 806 23532 (bad,good)  opposite 



Negative Weighting 

• A feature of our model that assigns dissimilar vectors to 
antonym pairs 
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Negative Weighting 

• For each word w, compute           similarly to         , but using 
the set of antonym patterns (AP) 

 

 
 

 

 

 

 β is tuned using a development set 
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Values for Opposite Contexts are small 
bad, good 
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Negative Weighting is able to distinguish 
between similar and opposite pairs 
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• More about the SP+ model 
– Set of symmetric pattern types is extracted from plain text using the 

(Davidov & Rappoport, 2006) algorithm 

– Positive Point-wise Mutual Information (PPMI) normalization 

– Personalized Page-rank like smoothing 
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• Embeddings are generated using an 8G words corpus 

• Evaluation: Word similarity task 

– SimLex999 dataset (Hill et al., 2014) 

– Compute a ranking based on the SP+ model’s prediction of the degree 
of similarity between pairs of word  

– Compare this ranking to the one generated by human judgments  
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Results 
 SimLex999 Dataset 

Spearman’s ρ Model 

0.35 GloVe (Pennington et al., 2014) 

0.423 PPMI-Bag-of-words 

0.43 word2vec CBOW (Mikolov et al,. 2013) 

0.436 word2vec Dep (Levy and Goldberg, 2014) 

0.455 NNSE (Murphy et al., 2012) 

0.462 word2vec skip-gram (Mikolov et al., 2013)  

0.517 SP+ (Schwartz et al., 2015) 

0.563 Joint 
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Verbs Nouns Adjective Model 

0.163 0.377 0.571 GloVe (Pennington et al., 2014) 

0.276 0.451 0.548 PPMI-Bag-of-words 

0.252 0.48 0.579 word2vec CBOW (Mikolov et al,. 2013) 

0.376 0.449 0.54 word2vec Dep (Levy and Goldberg, 2014) 

0.318 0.487 0.594 NNSE (Murphy et al., 2012) 

0.307 0.501 0.604 word2vec skip-gram (Mikolov et al., 2013)  

0.578 0.497 0.663 SP+ (Schwartz et al., 2015) 
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Embeddings @ Roy Schwartz 

Part-of-Speech Analysis 
Spearman’s ρ on the SimLex999 Dataset 
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Symmetric Patterns are Useful for 
Capturing Word Similarity 

Pattern-based Solutions to Limitations of Leading Word 
Embeddings @ Roy Schwartz 

• Symmetric patterns overcome three of the limitations of 
general word embeddings 
– They capture similarity rather than relatedness 

– They distinguish between similar and opposite pairs 

– They capture verb similarity 

• In our experiments on SimLex999 
– 5.5% improvement over six leading models 

– 10% improvement with a joint model 

– 20% improvement on verbs 
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• Revisiting Word Embedding for Contrasting Meaning (Chen et al.) 

• Learning Semantic Word Embeddings based on Ordinal Knowledge 
Constraints (Liu et al.) 

• A Multitask Objective to Inject Lexical Contrast into Distributional Semantics 
(Pham et al.) 

•  AutoExtend: Extending Word Embeddings to Embeddings for Synsets and 
Lexemes (Rothe and Schutze) 

Pattern-based Solutions to Limitations of Leading Word 
Embeddings @ Roy Schwartz 

Word Embeddings that Identify Antonyms 
ACL 2015 Papers 
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Word Embeddings that Identify Antonyms 
ACL 2015 Papers 

Our SP+ model is the only corpus-based 
model to identify antonyms  

(w/o using a dictionary or a thesaurus) 
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• Background 

– Word embeddings are great! 

• Problem 

– They also suffer from major limitations 

• Solution 

– Pattern-based methods overcome many of these 
limitations 



The Skig-gram model’s Performance on Verb Similarity  
(Schwartz et al., in review) 

• The word2vec skip-gram model (Mikolov et al., 2013) verb 
similarity scores are particularly low 

 

 

 

• We set to isolate the role of the context type in the 
performance of this model 
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Verbs Nouns Model 

0.307 0.501 word2vec skip-gram (Mikolov et al., 2013)  

0.578 0.497 SP+ (Schwartz et al., 2015) 



Controlled Experiments 

• We train the word2vec skip-gram model three times, each 
time with a different type of context 
– Bag-of-words contexts (Mikolov et al., 2013) 

– Dependency contexts (Levy & Goldberg, 2014) 

– Symmetric pattern contexts (Schwartz et al., 2015) 

• All other modeling decisions are identical 

• Experiments with the verb portion of SimLex999 
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Embeddings @ Roy Schwartz 

30 



Context Type Matters 
Symmetric Patterns >> Bag-of-words 
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Spearman’s ρ Context Type Model 

0.307 Bag-of-Words  
skip-gram 0.386 Dependency Links 

0.459 Symmetric Patterns 

• Results on the verb portion of the SimLex999 Dataset 



Compact Model 
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Train Time (Mins) #Contexts Verbs Context Type Model 

320 13000M 0.307 Bag-of-Words  
skip-gram 551 14500M 0.386 Dependency Links 

11 270M 0.459 Symmetric Patterns 



Additive Value of Symmetric Patterns and 
Negative Weighting 
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Verbs Context Type Model 

0.307 Bag-of-Words  
skip-gram 0.386 Dependency Links 

0.459 Symmetric Patterns 

0.578 Symmetric Patterns SP+ (Schwartz et al., 2015) 

0.441 Symmetric Patterns SP-NW (Schwartz et al., 2015) 
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Verbs Context Type Model 
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Verbs Context Type Model 

0.307 Bag-of-Words  
skip-gram 0.386 Dependency Links 

0.459 Symmetric Patterns 

0.578 Symmetric Patterns SP+ (Schwartz et al., 2015) 

0.441 Symmetric Patterns SP-NW (Schwartz et al., 2015) 

0 

+~15% 

+~15% 

+~27% 



Summary 

• Patterns provide strong answers to the shortcomings of word 
embeddings 

• They capture fine grained distinctions of word relatedness 
(similarity, dissimilarity, …) 

• They are particularly useful for modeling verb similarity 
– 15-27% improvement on a verb similarity task 

• They are much more compact than other types of context 
– Training with pattern contexts takes ~2-3% of the training time with 

other types of context 
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Ongoing Work 

• Negative weighting vs. negative sampling 

• Use patterns to identify multiword expressions 

• Experiment with symmetric patterns in a multilingual setup 

• Semantics of prepositions 

• Word analogies: patterns vs. vector operations 

• Does order count? The asymmetry of symmetric patterns 
– now or never > *never or now 
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Surprise 

 

John and Mary are friends. They hang 
out together. Last night John moved 

out of town without telling Mary 
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Surprise – why? 

Pattern-based Solutions to Limitations of Leading Word 
Embeddings @ Roy Schwartz 

• surprising ≈ interesting 

• Useful for NLP 
– Text summarization 

– Text search 

– News feed 

– Dialogue systems 

– Essay scoring 

– Detection of sarcasm/humor 

– … 

• Interesting from a cognitive perspective 
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• Background 

– Word embeddings are great! 

• Problem 

– They also suffer from major limitations 

• Solution 

– Pattern-based methods overcome many of these 
limitations 
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Thank you! 


