Pattern-based Solutions to Limitations of Leading Word Embeddings

Roy Schwartz

University of Washington NLP Seminar, February 8th, 2016 Joint work with Roi Reichart and Ari Rappoport

- Background
 - Word embeddings are great!
- Problem
 - They also suffer from major limitations
- Solution
 - Pattern-based methods overcome many of these limitations

Publications

- Symmetric Patterns: Fast and Enhanced Representation of Verbs and Adjectives (Schwartz, Reichart & Rappoport, in review)
- Symmetric Pattern Based Word Embeddings for Improved Word Similarity Prediction (Schwartz, Reichart & Rappoport, CoNLL 2015)
- How Well Do Distributional Models Capture Different Types of Semantic Knowledge? (Rubinstein, Levi, **Schwartz** & Rappoport, *ACL 2015*)
- Minimally Supervised Classification to Semantic Categories using Automatically Acquired Symmetric Patterns (**Schwartz**, Reichart & Rappoport, *COLING 2014*)
- Authorship Attribution of Micro-Messages (Schwartz, Tsur, Rappoport & Koppel, EMNLP 2013)
- Learnability-based Syntactic Annotation Design (Schwartz, Abend & Rappoport, COLING 2012)
- Neutralizing Linguistically Problematic Annotations in Unsupervised Dependency Parsing Evaluation (Schwartz, Abend, Reichart & Rappoport, ACL 2011)

Word Embedding Models

A.K.A Vector Space Models

- Design vector representations of linguistic units (words, phrases, ...)
- Distributional Semantics hypothesis (Harris, 1954)
 - Words that occur in similar contexts are likely to have similar meanings

Word Embedding Models

A.K.A Vector Space Models

- Design vector representations of linguistic units (words, phrases, ...)
- Distributional Semantics hypothesis (Harris, 1954)
 - Words that occur in similar contexts are likely to have similar meanings

Word Embedding Models A.K.A Vector Space Models

- Design vector representations of linguistic units (words, phrases, ...)
- Distributional Semantics hypothesis (Harris, 1954)
 - Words that occur in similar contexts are likely to have similar meanings
- Most embedding models use *bag-of-words* contexts
 - Without taking into account *order* or *directionality*

Word Embedding Models A.K.A Vector Space Models

- Design vector representations of linguistic units (words, phrases, ...)
- Distributional Semantics hypothesis (Harris, 1954)
 - Words that occur in similar contexts are likely to have similar meanings
- Most embedding models use *bag-of-words* contexts
 - Without taking into account *order* or *directionality*

John is a good **friend** of Mary

Word Embeddings are Great, But...

- **Great results** on word relatedness, word analogy, synonym detection, etc. (Baroni et al., 2014)
- Also useful for downstream applications
 - Sentiment Analysis (Maas et al., ACL 2011, Socher et al., EMNLP 2013)
 - Parsing (Socher et al, EMNLP 2012; Lazaridou et al., EMNLP 2013)

Word Embeddings are Great, But...

- **Great results** on word relatedness, word analogy, synonym detection, etc. (Baroni et al., 2014)
- Also useful for downstream applications
 - Sentiment Analysis (Maas et al., ACL 2011, Socher et al., EMNLP 2013)
 - Parsing (Socher et al, EMNLP 2012; Lazaridou et al., EMNLP 2013)
- But ...
- They also suffer from major limitations

Limitations of Word Embeddings 50 shades of "Relatedness"

- Failure to distinguish between correlation and similarity (Schwartz et al., CoNLL 2015)
 - cup/coffee vs. cup/glass
 - dog/leash vs. dog/cat
 - car/wheel vs. car/train

Limitations of Word Embeddings 50 shades of "Relatedness"

- Failure to distinguish between **correlation** and **similarity** (**Schwartz** et al., CoNLL 2015)
 - cup/coffee vs. cup/glass
 - dog/leash vs. dog/cat
 - car/wheel vs. car/train
- Failure to distinguish between similarity and (dis)similarity (Schwartz et al., CoNLL 2015)
 - good/great vs. good/bad
 - big/large vs. big/small

Limitations of Word Embeddings 50 shades of "Relatedness"

- Failure to distinguish between **correlation** and **similarity** (**Schwartz** et al., CoNLL 2015)
 - cup/coffee vs. cup/glass
 - dog/leash vs. dog/cat
 - car/wheel vs. car/train
- Failure to distinguish between **similarity** and (**dis**)**similarity** (**Schwartz** et al., CoNLL 2015)
 - good/great vs. good/bad
 - big/large vs. big/small
- Failure to capture hyponyms and entailment (Levy et al., NAACL 2015)
 - dog/animal, flu/fever

Limitations of Word Embeddings No <u>Attributive</u> Knowledge

- Word embeddings are very good at capturing taxonomic properties
 - cat, dog and elephant belong to the same class (animals)

Limitations of Word Embeddings No <u>Attributive</u> Knowledge

- Word embeddings are very good at capturing taxonomic properties
 - cat, dog and elephant belong to the same class (animals)

- They are much worse at capturing attributive properties (Rubinstein, Levi, Schwartz and Rappoport, ACL 2015)
 - bananas, the sun and school buses share the same color (yellow)

Limitations of Word Embeddings No <u>Attributive</u> Knowledge

- Word embeddings are very good at capturing taxonomic properties
 - cat, dog and elephant belong to the same class (animals)
- They are much worse at capturing attributive properties (Rubinstein, Levi, Schwartz and Rappoport, ACL 2015)
 - bananas, the sun and school buses share the same color (yellow)

Limitations of Word Embeddings Failure to Model <u>Verb</u> Similarity

- Verbs received relatively little attention in the word embedding literature
 - Significantly less than **nouns**
 - Very few verb datasets

Limitations of Word Embeddings Failure to Model <u>Verb</u> Similarity

- Verbs received relatively little attention in the word embedding literature
 - Significantly less than **nouns**
 - Very few verb datasets
- Word embeddings perform substantially worse on verb similarity, as compared to noun similarity
 (Schwartz et al., CoNLL 2015; Schwartz et al., in review)

Limitations of Word Embeddings Failure to Model <u>Verb</u> Similarity

- Verbs received relatively little attention in the word embedding literature
 - Significantly less than **nouns**
 - Very few verb datasets
- Word embeddings perform substantially worse on verb similarity, as compared to noun similarity
 (Schwartz et al., CoNLL 2015; Schwartz et al., in review)
- Spearman's ρ scores on SimLex999 (Hill et al., 2014):

<u>Model</u>	<u>Nouns</u>	<u>Verbs</u>
GloVe (Pennington et al., 2014)	0.377	0.163
word2vec skip-gram (Mikolov et al., 2013)	0.501	0.307

Recap: Shortcomings of Word Embeddings

- They do not support distinctions finer than "relatedness" Similarity, dissimilarity, hyponymy, entailment ...
- They fail to capture *attributive* similarity Bananas and school buses are yellow, elephants and mountains are large
- Their suffer from low performance on *verb* similarity

Solution: Lexico-syntactic Patterns

- Patterns are sequences of *words* and *wildcards*
 - "X and Y"
 - "**X** is a **Y**"
 - "wow, what a great X!"

Solution: Lexico-syntactic Patterns

- Patterns are sequences of *words* and *wildcards*
 - "X and Y"
 - "**X** is a **Y**"
 - "wow, what a great X!"
- Hearst (1992) introduced the concept of patterns
 - Used "X such as Y" to detect hyponyms ("animals such as dogs")
 - This method is still considered one of the most efficient ways of extracting hyponyms

Relation Extraction Using Patterns

- Patterns were found useful for recognizing other coarsegrained relations:
 - Antonyms (opposite meaning, *Lin et al., 2003*)
 - General verb relations (happens-before, stronger-than, Chklovski and Pantel, 2004)
- Patterns can also represent a wide range of semantic relations from different domains
 - Entertainment: *stars-in-film* (Etzioni et al., Artificial Intelligence 2005)
 - Geography: *capital-of, river-in* (Davidov, Rappoport & Koppel, ACL 2007)
 - Technology: *accessory-of* (Davidov & Rappoport, ACL 2008)

Relation Extraction Using Patterns

- Patterns were found useful for recognizing other coarsegrained relations:
 - Antonyms (opposite meaning, *Lin et al., 2003*)
 - General verb relations (happens-before, stronger-than, *Chklovski and Pantel*, 2004)
- Patterns can also represent a wide range of semantic relations from different domains
 - Entertainment: *stars-in-film* (Etzioni et al., Artificial Intelligence 2005)
 - Geography: *capital-of, river-in* (Davidov, Rappoport & Koppel, ACL 2007)
 - Technology: *accessory-of* (Davidov & Rappoport, ACL 2008)
- Symmetric Patterns

X or Y

neither X nor Y

X as well as Y

Pattern-based Solutions to Limitations of Leading Word Embeddings @ Roy Schwartz

beds and sofas

sofas and beds

X and Y X is a Y

beds and sofas Rihanna is a singer

sofas and beds *singer is a Rihanna

beds and sofas

sofas and beds

- Words that co-occur in *symmetric patterns* often take the same semantic role
 - John and Mary went to school
 - Is it better to <u>walk or run</u>?
 - Jane is *smart* as well as *funny*

Symmetric Patterns for Word **Similarity**

- Symmetric patterns have shown useful for capturing different aspects of word *similarity* in semantic tasks
 - Lexical acquisition (Widdows & Dorow, COLING 2002),
 - Semantic clustering (Davidov & Rappoport, ACL 2006)
 - Construction of connotative lexicon (Feng et al., ACL 2013)
 - Minimally supervised word classification (Schwartz et al., COLING 2014)

Symmetric Patterns for Word **Similarity**

- Symmetric patterns have shown useful for capturing different aspects of word *similarity* in semantic tasks
 - Lexical acquisition (Widdows & Dorow, COLING 2002),
 - Semantic clustering (Davidov & Rappoport, ACL 2006)
 - Construction of connotative lexicon (Feng et al., ACL 2013)
 - Minimally supervised word classification (Schwartz et al., COLING 2014)

Symmetric-Pattern-based methods can overcome many of the limitations of general word embeddings!

- Recall:
 - Related words are not necessarily similar (cow/milk)
 - Word embeddings (based on **bag-of-words** context) fail to make this distinction

- Recall:
 - Related words are not necessarily similar (cow/milk)
 - Word embeddings (based on **bag-of-words** context) fail to make this distinction

Туре	Example	#instances	
		Bag-of-words	Symmetric Patterns
similar	(car, train)	2418	145
	(coffee, tea)	6324	1857
	(dog,cat)	3645	2090

- Recall:
 - Related words are not necessarily similar (cow/milk)
 - Word embeddings (based on **bag-of-words** context) fail to make this distinction

Туре	Example	#instances	
		Bag-of-words	Symmetric Patterns
similar	(car, train)	2418	145
	(coffee, tea)	6324	1857
	(dog,cat)	3645	2090
related	(car, wheel)	333	3
	(coffee, <mark>cup</mark>)	7247	6
	(dog,walking)	2837	4

- Recall:
 - Related words are not necessarily similar (cow/milk)
 - Word embeddings (based on **bag-of-words** context) fail to make this distinction

Туре	Example	#instances		
		Bag-of-words	Symmetric Patterns	
similar	(car, train)	2418	145	
	(coffee, tea)	6324	1857	
	(dog,cat)	3645	2090	
related	(car, wheel)	333	3	
	(coffee, <mark>cup</mark>)	7247	6	
	(dog,walking)	2837	4	

Symmetric Patterns as Word Embeddings Contexts Schwartz, Reichart and Rappoport, CoNLL 2015

Pattern-based Solutions to Limitations of Leading Word Embeddings @ Roy Schwartz

Symmetric Patterns as Word Embeddings Contexts Schwartz, Reichart and Rappoport, CoNLL 2015

Symmetric Patterns as Word Embeddings Contexts Schwartz, Reichart and Rappoport, CoNLL 2015

<u>The goal:</u>

Distinguish between *similarity* and *relatedness*

Pattern-based Solutions to Limitations of Leading Word Embeddings @ Roy Schwartz positive

small/zero

Pattern-based Solutions to Limitations of Leading Word Embeddings @ Roy Schwartz positive

small/zero

Pattern-based Solutions to Limitations of Leading Word Embeddings @ Roy Schwartz positive

small/zero

Similarity vs. Dissimilarity

- Recall:
 - Word embeddings fail to distinguish between similar and opposite pairs of words (good/great vs. good/bad)

Similarity vs. Dissimilarity

- Recall:
 - Word embeddings fail to distinguish between similar and opposite pairs of words (good/great vs. good/bad)
- Some patterns are indicative of antonymy (Lin et al. 2003)
 - Antonym patterns = { "either X or Y", "from X to Y" }
 - either big or small, from poverty to richness

Similarity vs. Dissimilarity

- Recall:
 - Word embeddings fail to distinguish between similar and opposite pairs of words (good/great vs. good/bad)
- Some patterns are indicative of antonymy (Lin et al. 2003)
 - Antonym patterns = { "either X or Y", "from X to Y" }
 - either big or small, from poverty to richness

Туре	Example	#instances		
		Bag-of-words	Symmetric Patterns	Antonym Patterns
related	(bad, dream)	1208	0	0
similar	(bad, evil)	561	114	0
opposite	(bad, <mark>good</mark>)	23532	806	80

Negative Weighting

• A feature of our model that assigns dissimilar vectors to antonym pairs

Negative Weighting

- A feature of our model that assigns dissimilar vectors to antonym pairs
- For each word *w*, compute V_w^{AP} similarly to V_w^{SP} , but using the set of antonym patterns (AP)

$$V_{\scriptscriptstyle W}^{\rm SP^+} = V_{\scriptscriptstyle W}^{\rm SP} - \beta \cdot V_{\scriptscriptstyle W}^{\rm AP}$$

 $\clubsuit \quad \beta \text{ is tuned using a development set}$

Values for *Related* Contexts are small bad, dream

Values for *Related* Contexts are small bad, dream

Values for *Similar* Contexts are large bad, evil

positive small/zero

Values for *Similar* Contexts are large bad, evil

Values for *Opposite* Contexts are small bad, good

Values for *Opposite* Contexts are small bad, good

Values for *Opposite* Contexts are small bad, good

Negative Weighting is able to distinguish between similar and opposite pairs

Experiments

- More about the SP⁺ model
 - Set of symmetric pattern types is extracted from plain text using the (Davidov & Rappoport, 2006) algorithm
 - Positive Point-wise Mutual Information (PPMI) normalization
 - Personalized Page-rank like smoothing

Experiments

- More about the **SP**⁺ model
 - Set of symmetric pattern types is extracted from plain text using the (Davidov & Rappoport, 2006) algorithm
 - Positive Point-wise Mutual Information (PPMI) normalization
 - Personalized Page-rank like smoothing
- Embeddings are generated using an 8G words corpus
- Evaluation: Word similarity task
 - SimLex999 dataset (Hill et al., 2014)
 - Compute a ranking based on the SP⁺ model's prediction of the degree of similarity between pairs of word
 - Compare this ranking to the one generated by human judgments

<u>Model</u>	<u>Spearman's ρ</u>
GloVe (Pennington et al., 2014)	0.35
PPMI-Bag-of-words	0.423
word2vec CBOW (Mikolov et al,. 2013)	0.43
word2vec Dep (Levy and Goldberg, 2014)	0.436
NNSE (Murphy et al., 2012)	0.455
word2vec skip-gram (Mikolov et al., 2013)	0.462
SP ⁺ (Schwartz et al., 2015)	0.517

<u>Model</u>	<u>Spearman's ρ</u>
GloVe (Pennington et al., 2014)	0.35
PPMI-Bag-of-words	0.423
word2vec CBOW (Mikolov et al,. 2013)	0.43
word2vec Dep (Levy and Goldberg, 2014)	0.436
NNSE (Murphy et al., 2012)	0.455
word2vec skip-gram (Mikolov et al., 2013)	0.462
SP ⁺ (Schwartz et al., 2015)	0.517

<u>Model</u>	<u>Spearman's ρ</u>
GloVe (Pennington et al., 2014)	0.35
PPMI-Bag-of-words	0.423
word2vec CBOW (Mikolov et al,. 2013)	0.43
word2vec Dep (Levy and Goldberg, 2014)	0.436
NNSE (Murphy et al., 2012)	0.455
word2vec skip-gram (Mikolov et al., 2013)	0.462
SP ⁺ (Schwartz et al., 2015)	0.517

$$f_{joint}(w_i, w_j) = \alpha \cdot f_{SP^+}(w_i, w_j) + (1 - \alpha) \cdot f_{skip-gram}(w_i, w_j)$$

<u>Model</u>	<u>Spearman's ρ</u>	
GloVe (Pennington et al., 2014)	0.35	
PPMI-Bag-of-words	0.423	
word2vec CBOW (Mikolov et al,. 2013)	0.43	
word2vec Dep (Levy and Goldberg, 2014)	0.436	
NNSE (Murphy et al., 2012)	0.455	
word2vec skip-gram (Mikolov et al., 2013)	0.462	
SP ⁺ (Schwartz et al., 2015)	0.517))10.1
Joint	0.563	Ľ

$$f_{joint}(w_i, w_j) = \alpha \cdot f_{SP^+}(w_i, w_j) + (1 - \alpha) \cdot f_{skip-gram}(w_i, w_j)$$

Part-of-Speech Analysis Spearman's p on the SimLex999 Dataset

<u>Model</u>	Adjective
GloVe (Pennington et al., 2014)	0.571
PPMI-Bag-of-words	0.548
word2vec CBOW (Mikolov et al,. 2013)	0.579
word2vec Dep (Levy and Goldberg, 2014)	0.54
NNSE (Murphy et al., 2012)	0.594
word2vec skip-gram (Mikolov et al., 2013)	0.604
SP ⁺ (Schwartz et al., 2015)	0.663

Part-of-Speech Analysis Spearman's p on the SimLex999 Dataset

<u>Model</u>	Adjective	<u>Nouns</u>
GloVe (Pennington et al., 2014)	0.571	0.377
PPMI-Bag-of-words	0.548	0.451
word2vec CBOW (Mikolov et al,. 2013)	0.579	0.48
word2vec Dep (Levy and Goldberg, 2014)	0.54	0.449
NNSE (Murphy et al., 2012)	0.594	0.487
word2vec skip-gram (Mikolov et al., 2013)	0.604	0.501
SP ⁺ (Schwartz et al., 2015)	0.663	0.497

Part-of-Speech Analysis Spearman's ρ on the SimLex999 Dataset

<u>Model</u>	Adjective	<u>Nouns</u>	<u>Verbs</u>
GloVe (Pennington et al., 2014)	0.571	0.377	0.163
PPMI-Bag-of-words	0.548	0.451	0.276
word2vec CBOW (Mikolov et al,. 2013)	0.579	0.48	0.252
word2vec Dep (Levy and Goldberg, 2014)	0.54	0.449	0.376
NNSE (Murphy et al., 2012)	0.594	0.487	0.318
word2vec skip-gram (Mikolov et al., 2013)	0.604	0.501	0.307
SP ⁺ (Schwartz et al., 2015)	0.663	0.497	0.578

Part-of-Speech Analysis Spearman's ρ on the SimLex999 Dataset

<u>Model</u>	Adjective	<u>Nouns</u>	<u>Verbs</u>
GloVe (Pennington et al., 2014)	0.571	0.377	0.163
PPMI-Bag-of-words	0.548	0.451	0.276
word2vec CBOW (Mikolov et al,. 2013)	0.579	0.48	0.252
word2vec Dep (Levy and Goldberg, 2014)	0.54	0.449	0.376
NNSE (Murphy et al., 2012)	0.594	0.487	0.318
word2vec skip-gram (Mikolov et al., 2013)	0.604	0.501	0.307
SP ⁺ (Schwartz et al., 2015)	0.663	0.497	0.578

Part-of-Speech Analysis Spearman's ρ on the SimLex999 Dataset

<u>Model</u>	Adjective	<u>Nouns</u>	<u>Verbs</u>
GloVe (Pennington et al., 2014)	0.571	0.377	0.163
PPMI-Bag-of-words	0.548	0.451	0.276
word2vec CBOW (Mikolov et al,. 2013)	0.579	0.48	0.252
word2vec Dep (Levy and Goldberg, 2014)	0.54	0.449	0.376
NNSE (Murphy et al., 2012)	0.594	0.487	0.318
word2vec skip-gram (Mikolov et al., 2013)	0.604	0.501	0.307
SP+ (Schwartz et al., 2015)	0.663	0.497	0.578

Symmetric Patterns are Useful for Capturing Word <u>Similarity</u>

- Symmetric patterns overcome three of the limitations of general word embeddings
 - They capture similarity rather than relatedness
 - They distinguish between similar and opposite pairs
 - They capture <u>verb</u> similarity
- In our experiments on SimLex999
 - **5.5%** improvement over six leading models
 - 10% improvement with a joint model
 - 20% improvement on verbs

Word Embeddings that Identify Antonyms ACL 2015 Papers

- *Revisiting Word Embedding for Contrasting Meaning* (Chen et al.)
- Learning Semantic Word Embeddings based on Ordinal Knowledge Constraints (Liu et al.)
- A Multitask Objective to Inject Lexical Contrast into Distributional Semantics (Pham et al.)
- AutoExtend: Extending Word Embeddings to Embeddings for Synsets and Lexemes (Rothe and Schutze)

Word Embeddings that Identify Antonyms ACL 2015 Papers

- *Revisiting Word Embedding for Contrasting Meaning* (Chen et al.)
- Learning Semantic Word Embeddings based on Ordinal Knowledge Constraints (Liu et al.)
- A Multitask Objective to Inject Lexical Contrast into Distributional Semantics (Pham et al.)
- AutoExtend: Extending Word Embeddings to Embeddings for Synsets and Lexemes (Rothe and Schutze)

Our SP⁺ model is the only <u>corpus-based</u> model to identify antonyms (w/o using a dictionary or a thesaurus)

- Background
 - Word embeddings are great!
- Problem
 - They also suffer from major limitations
- Solution
 - Pattern-based methods overcome many of these limitations

The Skig-gram model's Performance on Verb Similarity (Schwartz et al., in review)

• The word2vec skip-gram model (Mikolov et al., 2013) **verb** similarity scores are particularly low

<u>Model</u>	<u>Nouns</u>	<u>Verbs</u>
word2vec skip-gram (Mikolov et al., 2013)	0.501	0.307
SP+ (Schwartz et al., 2015)	0.497	0.578

• We set to isolate the role of the *context type* in the performance of this model

Controlled Experiments

- We train the word2vec skip-gram model three times, each time with a different type of context
 - Bag-of-words contexts (Mikolov et al., 2013)
 - Dependency contexts (Levy & Goldberg, 2014)
 - Symmetric pattern contexts (**Schwartz** et al., 2015)
- All other modeling decisions are identical
- Experiments with the *verb* portion of SimLex999

Context Type Matters Symmetric Patterns >> Bag-of-words

• Results on the verb portion of the SimLex999 Dataset

<u>Model</u>	<u>Context Type</u>	Spearman's p
	Bag-of-Words	0.307
skip-gram	Dependency Links	0.386
	Symmetric Patterns	0.459

Compact Model

<u>Model</u>	<u>Context Type</u>	<u>Verbs</u>	<u>#Contexts</u>	<u>Train Time (Mins)</u>
skip-gram	Bag-of-Words	0.307	13000M	320
	Dependency Links	0.386	14500M	551
	Symmetric Patterns	0.459	270M	11
<u>Model</u>	<u>Context Type</u>	<u>Verbs</u>		
---	---------------------	--------------		
skip-gram	Bag-of-Words	0.307		
	Dependency Links	0.386		
	Symmetric Patterns	0.459		
SP ⁺ (Schwartz et al., 2015)	Symmetric Patterns	0.578		

<u>Model</u>	<u>Context Type</u>	<u>Verbs</u>
skip-gram	Bag-of-Words	0.307
	Dependency Links	0.386
	Symmetric Patterns	0.459
SP⁺ (Schwartz et al., 2015)	Symmetric Patterns	0.578
SP ^{-NW} (Schwartz et al., 2015)	Symmetric Patterns	0.441

<u>Model</u>	<u>Context Type</u>	<u>Verbs</u>
skip-gram	Bag-of-Words	0.307
	Dependency Links	0.386
	Symmetric Patterns	0.459
SP ⁺ (Schwartz et al., 2015)	Symmetric Patterns	0.578
SP ^{-NW} (Schwartz et al., 2015)	Symmetric Patterns	0.441

<u>Model</u>	<u>Context Type</u>	<u>Verbs</u>	
skip-gram	Bag-of-Words	0.307	0
	Dependency Links	0.386	
	Symmetric Patterns	0.459	+~15%
SP ⁺ (Schwartz et al., 2015)	Symmetric Patterns	0.578	
SP-NW (Schwartz et al., 2015)	Symmetric Patterns	0.441	+~15%

<u>Model</u>	<u>Context Type</u>	<u>Verbs</u>	
skip-gram	Bag-of-Words	0.307	0
	Dependency Links	0.386	
	Symmetric Patterns	0.459	+~15%
SP ⁺ (Schwartz et al., 2015)	Symmetric Patterns	0.578	+~27%
SP-NW (Schwartz et al., 2015)	Symmetric Patterns	0.441	+~15%

Summary

- Patterns provide strong answers to the shortcomings of word embeddings
- They capture fine grained distinctions of word relatedness (similarity, dissimilarity, ...)
- They are particularly useful for modeling *verb* similarity
 - 15-27% improvement on a verb similarity task
- They are much more **compact** than other types of context
 - Training with pattern contexts takes ~2-3% of the training time with other types of context

Ongoing Work

- Negative weighting vs. negative *sampling*
- Use patterns to identify multiword expressions
- Experiment with symmetric patterns in a multilingual setup
- Semantics of prepositions
- Word analogies: patterns vs. vector operations
- Does order count? The asymmetry of symmetric patterns
 - now or never > *never or now

Acknowledgments

- Many thanks to:
- Ari Rappoport
- Roi Reichart
- Dana Rubinstein
- Effi Levi

Acknowledgments

- Many thanks to:
- Ari Rappoport
- Roi Reichart
- Dana Rubinstein
- Effi Levi

• Surprise!

Surprise

John and Mary are friends. They hang out together. Last night John moved out of town without telling Mary

Surprise – why?

- *surprising* ≈ *interesting*
- Useful for NLP
 - Text summarization
 - Text search
 - News feed
 - Dialogue systems
 - Essay scoring
 - Detection of sarcasm/humor

- ...

• Interesting from a cognitive perspective

Thank you!

- Background
 - Word embeddings are great!
- Problem
 - They also suffer from major limitations
- Solution

Pattern-based methods overcome many of these limitations

