Neutralizing Linguistically Problematic Annotations in Unsupervised Dependency Parsing Evaluation

Roy Schwartz1, Omri Abend1, Roi Reichart2 and Ari Rappoport1

1The Hebrew University, 2MIT

ISCOL 2011
Outline

• Introduction

• Problematic Gold Standard Annotation

• Sensitivity to the Annotation of Problematic Structures

• A Possible Solution – Undirected Evaluation

• A Novel Evaluation Measure
we want to play ROOT
Introduction

Related Work

• Supervised Dependency Parsing
 – McDonald et al., 2005
 – Nivre et al., 2006
 – Smith and Eisner, 2008
 – Zhang and Clark, 2008
 – Martins et al., 2009
 – Goldberg and Elhadad, 2010
 – inter alia

• Unsupervised Dependency Parsing (unlabeled)
 – Klein and Manning, 2004
 – Cohen and Smith, 2009
 – Headden et al., 2009
 – Blunsom and Cohn, 2010
 – Spitkovsky et al., 2010
 – inter alia
Introduction
Unsupervised Dependency Parsing Evaluation

• Evaluation performed against a gold standard

• Standard Measure – *Attachment Score*
 – Ratio of correct *directed* edges

• A single score (no precision/recall)
Introduction
Unsupervised Dependency Parsing Evaluation

• Example

 – Gold Std:

 PRP (we) VBP (want) TO (to) VB (play) ROOT

 – Score: 2/4

 PRP (we) VBP (want) TO (to) VB (play) ROOT
Problematic Gold Standard Annotation

• The gold standard annotation of some structures is Linguistically Problematic
 – I.e., *not under consensus*

• Examples
 – Infinitive Verbs
 (Collins, 1999)
 \[
 \text{to} \leftrightarrow \text{play}
 \]
 (Bosco and Lombardo, 2004)

 – Prepositional Phrases
 (Johansson and Nugues, 2007)
 \[
 \text{in} \leftrightarrow \text{Rome}
 \]
 (Yamada and Matsumoto, 2003)
Problematic Gold Standard Annotation

• Great majority of the problematic structures are local
 – Confined to 2–3 words only
 – Often, alternative annotations differ in the direction of some edge
 – The controversy only relates to the internal structure

• These structures are also very frequent
 – 42.9% of the tokens in PTB WSJ participate in at least one problematic structure

Neutralizing Linguistically Problematic Annotations in Unsupervised Dependency Parsing Evaluation @ Schwartz et al.
Problematic Gold Standard Annotation

- Gold standard in English (and other languages) – converted from constituency parsing using head percolation rules

- At least three substantially different conversion schemes are currently in use for the same task
 1. Collins head rules (Collins, 1999)
 - Used in e.g., (Berg-Kirkpatrick et al., 2010; Spitkovsky et al., 2010)
 2. Conversion rules of (Yamada and Matsumoto, 2003)
 - Used in e.g., (Cohen and Smith, 2009; Gillenwater et al., 2010)
 3. Conversion rules of (Johansson and Nugues, 2007)
 - Used in e.g., the CoNLL shared task 2007, (Blunsom and Cohn, 2010)
Problematic Structures

3 Different Gold Standards

Very Frequent
Sensitivity to the Annotation of Problematic Structures

Test → Trained Parser

Induced Parameters

< 1%

to play

Test → Modified Parser

Gold Standard Modified Parameters

X 3 leading Parsers

Neutralizing Linguistically Problematic Annotations in Unsupervised Dependency Parsing Evaluation @ Schwartz et al.
Sensitivity to the Annotation of Problematic Structures

<table>
<thead>
<tr>
<th>Model</th>
<th>Original</th>
<th>Modified</th>
<th>Modified - Original</th>
</tr>
</thead>
<tbody>
<tr>
<td>km04</td>
<td>34.3</td>
<td>43.6</td>
<td>9.3</td>
</tr>
<tr>
<td>cs09</td>
<td>39.7</td>
<td>54.4</td>
<td>14.7</td>
</tr>
<tr>
<td>saj10</td>
<td>41.3</td>
<td>54</td>
<td>12.7</td>
</tr>
</tbody>
</table>

- *km04* – Klein and Manning, 2004
- *cs09* – Cohen and Smith, 2009
- *saj10* – Spitkovsky et al., 2010
Current evaluation does not always reflect parser quality
A Possible Solution
Undirected Evaluation

• **Required** – a measure indifferent to alternative annotations of problematic structures

• **Recall** – most alternative annotations differ only in the direction of some edge

• **A possible solution** – a measure indifferent to edge directions

• How about *undirected evaluation*?
A Possible Solution
Undirected Evaluation

- Gold standard:

- Induced parse, with a flipped edge
A Possible Solution
Undirected Evaluation

- Gold standard:

```
PRP (we)  VBP (want)  TO (to)  VB (play)  ROOT
```

- Induced parse, with a flipped edge

```
PRP (we)  VBP (want)  TO (to)  VB (play)  ROOT
```

3/4 (75%) This is the minimal undirected score modification!
The Neutral Edge Direction (NED) Measure

• Undirected accuracy is not indifferent to edge flipping

• We will now present a measure that is – Neutral Edge Direction (NED)
 – A simple extension of the undirected evaluation measure
 – Ignores edge direction flips
Neutralizing Linguistically Problematic Annotations in Unsupervised Dependency Parsing Evaluation @ Schwartz et al.
The NED Measure

- Therefore, NED is defined as follows:
 - X is a correct parent of Y if:
 - X is Y’s gold parent or
 - X is Y’s gold child or
 - X is Y’s gold grandparent

Gold Standard

want

to ← play

linguistically plausible parse

want

to → play

Neutralizing Linguistically Problematic Annotations in Unsupervised Dependency Parsing Evaluation @ Schwartz et al.
NED Experiments

Difference Between Gold Standards

- *NED* substantially reduces the difference between alternative gold standards
NED Experiments

Sensitivity to Parameter modification

• *NED* substantially reduces the difference between parameter sets

• The sign of the NED difference is predictable and consistent (see paper)
Summary

• Problems in the evaluation of unsupervised parsers
 – Gold Standards – 3 used (~15% difference between them)
 – Current Parsers – very sensitive to alternative (plausible) annotations. Minor modifications result in ~9–15% performance “gain”
 – Undirected Evaluation – does not solve this problem

• Neutral Edge Direction (NED) measure
 – Simple and intuitive
 – Reduces difference between different gold standards to ~5%
 – Reduces undesired performance “gain” (~1–4%)
Take–Home Message

• We suggest reporting NED results along with the commonly used attachment score

http://www.cs.huji.ac.il/~roys02/software/ned.html

Many thanks to
• Shay Cohen
• Valentin I. Spitkovsky
• Jennifer Gillenwater
• Taylor Berg-Kirkpatrick
• Phil Blunsom
NED Critiques

• *NED* is too lax
 – The edge direction *does matter* in some cases
 • E.g., “big house”: (“big” ← “house”)

• However, the standard evaluation methods are *too strict*

• *Solution*: present *both evaluation scores* in future works
NED Critiques

- *NED* only ignores structures of size 2 (e.g., “to play”)
 - What about structures of larger size (e.g., “In the house”)?

- *NED* is able to ignore some of the “wrong” size 3 annotations
 - Though not all of them

- Expanding *NED* to size 3 structures seems *too lax*

- *Possible solution*: resolve these issues in the *gold standard annotation level*
NED and Supervised Dependency Parsing

• NED is generally better suited to evaluate *unsupervised* parsers

• However, it can be used to *better understand* the type of errors performed by *supervised* parsers as well
 – Better suited than using undirected evaluation measure
Sensitivity to the Annotation of Problematic Structures

• Experimental Setup
 – 3 leading unsupervised parsers
 • All use the same parameter set
 – Training: PTB WSJ sections 2–21

• Method
 – Manually modifying the learned parameters
 • Effectively *swapping edge directions* in 5 problematic structures
 • Modifications performed so to conform with the gold standard
 – Only 10–15 / ~2500 (< 1%) of the learned parameters are modified
 – Test (*before* and *after* modification): PTB WSJ section 23
 • Using the standard attachment score

Neutralizing Linguistically Problematic Annotations in Unsupervised Dependency Parsing Evaluation @ Schwartz et al.
Many thanks to

• Shay Cohen
• Valentin I. Spitkovsky
• Jennifer Gillenwater
• Taylor Berg-Kirkpatrick
• Phil Blunsom
• You for listening