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Messi	is	dribbling	past	Cristiano	RonaldoballMessiRonaldo

What did Messi do?
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Motivating Example
ROC Story Cloze Task (Mostafazadeh et al., 2016)

John and Mary have been dating for a while
Yesterday they had a date at a romantic restaurant
At one point John got down on his knees

Two competing endings:

I Option 1: John proposed

I Option 2: John tied his shoes

A hard task

I One year after the release of the dataset, state-of-the-art was still < 60%
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Motivating Example—Inductive Bias
Schwartz et al., CoNLL 2017

I Our observation: the annotation of the dataset resulted in writing biases
I E.g., wrong endings contain more negative terms

I Our solution: train a pattern-based classifier on the endings only
I 72.5% accuracy on the task

I Combined with deep learning methods, we get 75.2% accuracy
I First place in the LSDSem 2017 shared task
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Outline

Case study 1: Word embeddings
Schwartz et al., CoNLL 2015, NAACL 2016

Case Study 2: Recurrent Neural Networks
Schwartz et al., in submission
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Distributional Semantics Models
Aka, Vector Space Models, Word Embeddings
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V1.0: Count Models
Salton (1971)

I Each element vwi ∈ vw represents the bag-of-words co-occurrence of w with
another word i in some text corpus

I vdog = (cat: 10, leash: 15, loyal: 27, bone: 8, piano: 0, cloud: 0, . . . )

I Many variants of count models
I Weighting schemes: PMI, TF-IDF
I Dimensionality reduction: SVD/PCA
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V2.0: Predict Models
(Aka Word Embeddings; Bengio et al., 2003; Mikolov et al., 2013; Pennington et al., 2014)

I A new generation of vector space models
I Instead of representing vectors as cooccurrence counts, train a neural network to

predict p(word|context)
I context is still defined as bag-of-words context

I Models learn a latent vector representation of each word
I Developed to initialize feature vectors in deep learning models
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Recurrent Neural Networks
Elman (1990)

What a great movie

vWhat va vgreat vmovie

h1 h2 h3 h4

MLP
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Recurrent Neural Networks
Elman (1990)

What a great movie

vWhat va vgreat vmovie

h1 h2 h3 h4

MLP
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Word Embeddings — Problem
50 Shades of Similarity

I Bag-of-word contexts typically lead to association similarity
I Captures general word association: coffee — cup, car — wheel

I Some applications prefer functional similarity
I cup — glass, car — train
I E.g., syntactic parsing

11 / 38



Symmetric Pattern Contexts

I Symmetric patterns are a special type of language patterns
I X and Y, X as well as Y

I Words that appear in symmetric patterns are often similar rather than related
I read and write, smart as well as courageous
I ∗car and wheel, coffee as well as cup
I Davidov and Rappoport (2006); Schwartz et al. (2014)
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Symmetric Pattern Example

I found the movie funny and enjoyable

I cBOW (funny) = {I, found, the, movie, and, enjoyable}
I cBOW (movie) = {I, found, the, funny, and, enjoyable}
I csymm patts(funny) = {enjoyable}
I csymm patts(movie) = {}
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Solution: Inductive Bias using Symmetric Patterns

I Replace bag-of-words contexts with symmetric patterns
I Works both for count-based models and word embeddings

I Schwartz et al. (2015; 2016)

I 5–20% performance increase on functional similarity tasks
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Outline

Case study 1: Word embeddings
Schwartz et al., CoNLL 2015, NAACL 2016

Case Study 2: Recurrent Neural Networks
Schwartz et al., in submission
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Recurrent Neural Networks
Elman (1990)

I RNNs are used as internal layers in deep networks

I Each RNN has a hidden state which is a function of both the input and the
previous hidden state

I Variants of RNNs have become ubiquitous in NLP
I In particular, long short-term memory (LSTM; Hochreiter and Schmidhuber, 1997)

and gated recurrent unit (GRU; Cho et al., 2014)
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RNNs — Problems

I RNNs are heavily parameterizes, and thus prone to overfitting on small datasets

I RNNs are black boxes, and thus uninterpretable
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Lexico-syntactic Patterns
Hard Patterns

I Patterns are sequences of words and wildcards (Hearst, 1992)
I E.g., “X such as Y”, “X was founded in Y”, “what a great X!”, “how big is the X?”

I Useful for many NLP tasks
I Information about the words filling the roles of the wildcards

I animals such as dogs: dog is a type of an animal
I Google was founded in 1998

I Information about the document
I what a great movie!: indication of a positive review
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Flexible Patterns
Davidov et al. (2010)

Type Example

Exact match What a great movie !
Inserted words What a great funny movie !
Missing words What great shoes !
Replaced words What a wonderful book !

Table: What a great X !

I Can we go even softer?
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SoPa: An Interpretable Regular RNN

I We represent patterns as Weighted Finite State Automata with ε-transitions
(ε-WSFA)

I A pattern P with d states over a vocabulary V is represented as a tuple 〈π, T, η〉
I π ∈ Rd is an initial weight vector
I T ∈ (V ∪ {ε})→ Rd×d is a transition weight function
I η ∈ Rd is a final weight vector

I The score of a phrase pspan(x) = π>T(ε)∗ (
∏n
i=1T(xi)T(ε)∗) η

START END
What a great X !
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SoPa: Soft Patterns

I T is a parameterized function:

[T(x)]i,j =


σ(ui · vx + ai), if j = i (self-loop)

σ(wi · vx + bi), if j = i+ 1 (main path)

0, otherwise,

(1a)

[T(ε)]i,j =

{
σ(ci), if j = i+ 1

0, otherwise,
(1b)

I x is a word, vx is a pre-trained word embedding for x
I wi, ui are vectors of parameters
I ai, bi and ci are scalar parameters
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Concrete Word vs. Wildcards

[T(x)]i,j =


σ(ui · vx + ai), if j = i (self-loop)

σ(wi · vx + bi), if j = i+ 1 (main path)

0, otherwise,

I When ||wi|| ≈ 0 and bi � 0, T matches a wildcard

I When ||wi|| � 0, bi � 0 and wi is very close to a vector of some word (e.g.,
“what”), T is word specific

I Word embeddings allow T to “accept” classes of words (e.g., adjectives, concrete
nouns, animate nouns)
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Scoring a Document

I For a given pattern, compute the max of all matches in a document
I The Viterbi algorithm (Viterbi, 1967)

I Randomly initialize k patterns, compute score for each one individually
I This combination of k scores is the vector representation of the document
I This representation is fed into a multilayer perceptron to classify a given document

I We keep a hidden state of the pattern matching along the document

.
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SoPa as an RNN

Smith’s funniest and most likeable movie in years

max-pooled
END states

pattern1 states

word vectors

pattern2 states

START
states
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SoPa: More Details

I We learn the patterns end-to-end

I We randomly initialize a set of 30–70 pattern WFSAs of varying lengths (2–7)
I Implementation in PyTorch

I Adam optimizer, GloVe 840B embeddings, dropout

I Complexity: Assume k patterns, word embedding dimensionality v, maximum
pattern length is d

I The number of parameters in our model is (2v + 3) · d · k
I For k = 50, d = 6, v = 300, this results in roughly 180K parameters
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Experiments

I Three text classification datasets
I Baselines:

I BiLSTM, DAN (Iyyer et al., 2015), Hard-patterns
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RNNs — Problems
Reminder

I RNNs are heavily parameterizes, and thus prone to overfitting on small datasets

I RNNs are black boxes, and thus uninterpretable
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Results

Model ROC SST Amazon

Hard 62.2% (4K) 75.5% (6K) 88.5% (67K)
DAN 64.3% (91K) 83.1% (91K) 85.4% (91K)
BiLSTM 65.2% (844K) 84.8% (1.5M) 90.8% (844K)

SoPa 64.9% (123K) 84.9% (255K) 88.8% (253K)

29 / 38



Results
Reduced Training Set
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Interpretability
Individual Pattern

#States Highest Scoring Phrases

6

thoughtful , reverent portrait of
and astonishingly articulate cast of
entertaining , thought-provoking film with
gentle , mesmerizing portrait of
poignant and uplifting story in

6

’s uninspired story .
this bad on purpose
this leaden comedy .
a half-assed film .
is clumsy , the writing

#States Highest Scoring Phrases

5

honest , and enjoyable
soulful , scathing and joyous
unpretentious , charming , quirky
forceful , and beautifully
energetic , and surprisingly

3

five minutes
four minutes
final minutes
first half-hour
fifteen minutes
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Interpretability
Complete Document

Analyzed Documents

it’s dumb, but more importantly, it’s just not scary

though moonlight mile is replete with acclaimed actors and actresses and tackles a subject that’s
potentially moving, the movie is too predictable and too self-conscious to reach a level of high drama

While its careful pace and seemingly opaque story may not satisfy every moviegoer’s appetite, the
film’s final scene is soaringly, transparently moving

unlike the speedy wham-bam effect of most hollywood offerings, character development – and more
importantly, character empathy – is at the heart of italian for beginners.

the band’s courage in the face of official repression is inspiring, especially for aging hippies (this one
included).

.
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Future Work

I Further improving SoPa
I Loading pre-computed patterns
I SoPa on top of BiLSTM

I Applying SoPa to other NLP tasks
I Question answering, Text generation
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Summary

I Deep learning is great!
I But domain knowledge about language (inductive bias) is important to make it

work well in practice

I Patterns are a particularly useful for source of inductive bias
I Applications in word embeddings, RNNs, style detection
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Viterbi Recurrences

I Definitions:

[maxmul(A,B)]i,j =max
k

Ai,kBk,j (2a)

eps (v) =maxmul (v,max(I,T(ε))) (2b)

I Recurrences:

h0 =eps(π>) (3a)

ht+1 =max (eps(maxmul (ht,T(xt))),h0) (3b)

st =maxmul (ht, η) (3c)

sdoc = max
0≤t≤n

st (3d)

Back to main
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Self-loops and ε-transition

#States Highest Scoring Phrases

6

thoughtful , reverent portrait of
and astonishingly articulate cast of
entertaining , thought-provoking film with
gentle , mesmerizing portrait of
poignant and uplifting story in

6

’s ε uninspired story .
this ε bad on purpose
this ε leaden comedy .
a ε half-assed film .
is ε clumsy ,SL the writing

#States Highest Scoring Phrases

5

honest , and enjoyable
soulful , scathingSL and joyous
unpretentious , charmingSL , quirky
forceful , and beautifully
energetic , and surprisingly

3

five minutes
four minutes
final minutes
first half-hour
fifteen minutes

Back to main
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