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Premise:
Big Models
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Problems with Big Models

Research community

Synced
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Problems with Big Models

General Al Community

CE MACHINE LEARNING PROGRAMMING VISUALIZATION Al PICKS \Y

Too big to deploy: How GPT-2 is
breaking servers

A look at the bottleneck around deploying massive models to
production

Caleb Kaiser
' Jan 31 - 7 min read

https://towardsdatascience.com/too-big-to-deploy-how-gpt-2-is-breaking-production-63ab29f0897c



Problems with Big Models

Global Community

Consumption COze (Ibs)
Air travel, 1 person, NY +SF 1984
Human life, avg, 1 year 11,023
American life, avg, 1 year 36,156
Car, avg incl. fuel, 1 lifetime 126,000

Training one model (GPU)

NLP pipeline (parsing, SRL) 39
w/ tuning & experiments 78.468
Transformer (big) 192
w/ neural arch. search 626.155

Strubell et al. (2019)
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Green Al

Schwartz*, Dodge*, Smith & Etzioni (2019)

e (Goals:

e Enhance reporting of computational budgets

e

@ e Add a price-tag for scientific results

* Promote efficiency as a core evaluation for NLP

. Inference, training, model selection (e.g., hyperparameter tuning)

° In addition to accuracy




Big Models are Important

Push the limits of SOTA
Released large pre-trained models save compute

Large models are potentially faster to train

e Lietal. (2020)

But, big models have concerning side affects

* Inclusiveness, adoption, environment

Our goal is to mitigate these side affects
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s Model A > Model B?

Reimers & Gurevych (2017)
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s Model A > Model B?

Melis et al. (2018)

Model | Size  Depth Valld - Test Perplexity ()

§ Medlum LSTM Zaremba et al ("014) § |OM 2
Large LSTM, Zaremba ct al. ,(’701;4) § 24M 2
Wolf (2016)  5IM 2
VD LSTM Inan et al. (7016) M 2
VD LSTM, Inan et al. (2016) 28M 2
VD RHN, Zilly et al. (2016) 24M 10
NAS, Zoph & Le (2016) 25M -
NAS, Zoph & Le (2016) 54M -
AWD-LSTM, Merity et al. (2017) 24M 3
I
2
10M 4
5

: Carefully Tuned

1 (1500 trails)

2
24M 4
5
I
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BERT Performs on-par with RoBERTa/
XLNet with better Random Seeds

Dodge, llharco, Schwartz et al. (2020)

MRPC RTE CoLA SST
[90.7 700 62.1 ‘925

BERT (Phang et al., 2018)
BERT (Liu et al., 2019) 70.-
BERT (ours) 91.4 773 _67.6 95.1
STILTs (Phang et al., 2018) 90 9 83 4 62 1 93 2
XLNet (Yang et al., 2019) 89.2 83.8 63.6 95.6
RoBERTa (Liu et al., 2019) 90.9 86.6 68.0 96.4
ALBERT (Lan et al., 2019) 90.9 89.2 71.4 96.9
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Unfair Comparison

s Model A > Model B?



Better(?) Comparison

Is Model A > Model B? | Budget



Budget-Aware Comparison

"7 RoBERTa _ _ _ _ ____ 200k steps_ _ 300k steps __400ksteps_ _
500k steps
% ni-Large oBERTa
100k steps 100k steps
85 -
w -
S 80 EQTRA-Small
@ GPT
w
-
—
O
75 4 ¢ BERT-Small
®ELMo
70 -
#GloVe =—u Replaced Token Detection Pre-training
oo Masked Language Model Pre-training
| I I I I | I I |
0 1 2 3 4 5 6 7 8

Pre-train FLOPs 1e20

Performance | Budget
(Clark et al., 2020)
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Expected Validation

Dodge, Gururangan, Card, Schwartz & Smith, 2019

o Input: a set of experimental results {V}, ...,V }

o Define V,Zk = maXe(y,. Vi

o Expected validation performance: —[VIZx< | k]

e k=1:mean({Vy,...,V,})
o k=2:mean({max(V,,V)V1 <i<j<n})

o k=n: Vi =maxc
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Expected Validation

Example: SST5
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Expected Validation

Properties

Doesn’t require rerunning any experiment

An analysis of existing results

More comprehensive than

Reporting max (the rightmost point in our plots)

Reporting mean (the leftmost point in our plots)

0.40
0.38
0.36
0.34
=0.32
£0.3
0.28

0.26

0.24

—— LR

—e— CNN

10 20 30 40 50
Hyperparameter assignments

https://github.com/dodgejesse/show_your work
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https://github.com/dodgejesse/show_your_work

Reporting

Recap

e Budget-aware comparison

e EXxpected validation performance

e Estimation of the amount of computation required to obtain a given
accuracy

et
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Reporting
Open Questions

* How much will we gain by pouring more compute?

e What should we report?
* Number of experiments
e Time
* FLOPs
e Energy (KW)

e (Carbon?

* Bigger models, faster training?

e Lietal (2020)
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Green NLP Goals

Enhanced| | Efficient |
'Reporting| ' Methods




Efficient Methods

What are we making What are we
more efficient? measuring?

{Inference | | Training |

{ Model 1\
\ Selection }

http://mitchgordon.me/machine/learning/2019/11/18/all-the-ways-to-compress-BERT.html
https://blog.inten.to/speeding-up-bert-5528e18bb4ea
https://blog.rasa.com/compressing-bert-for-faster-prediction-2/
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http://mitchgordon.me/machine/learning/2019/11/18/all-the-ways-to-compress-BERT.html
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Efficient #inference

e Model distillation . #time; #energy

* Hinton et al. (2015); MobileBERT (Sun et al., 2019); DistilBERT (Sanh et al., 2019)

* Pruning / Structural Pruning , #time; #energy

* Han et al. (2016); SNIP (Lee et al., 2019); LTH (Frankle & Corbin, 2019)
e MorphNet (Gordon et al., 2018); Michel et al. (2019); LayerDrop (Fan et al., 2020)

e Dodge, Schwartz et al. (2019)

* Quantization . #time; #energy

e Gong et al. (2014); Q8BERT (Zafrir et al., 2019); Q-BERT (Shen et al., 2019)
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Efficiency

 Weight Factorization

* ALBERT (Lan et al., 2019); Wang et al., 2019

e Weight Sharing

* |nan et al., 2016; Press & Wolf, 2017
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Early Stopping

; #time; #energy

e Stop least promising experiments early on
e Successive halving (Jamieson & Talwalkar, 2016)

e Hyperband (Lee et al., 2017)

e \Works for random seeds too!

e Dodge, lIharco, Schwartz, et al. (2020)
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https://arxiv.org/search/cs?searchtype=author&query=Jamieson%2C+K

Other Efficient Methods

 Replacing dot-product attention with locally-sensitive hashing

e #inference; ; #time; #energy

e Reformer (Kitaev et al., 2020)

* More efficient usage of the input
* #inference; #training; ; #tlime; #energy

e ELECTRA (Clark et al., 2020)

* Analytical solution of the backward pass
e #inference;

* Deep equilibrium model (Bai et al., 2019)
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Efficiency/Accuracy Tradeoff

#inference; #time; #energy
Schwartz et al., in review
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Easy/Hard Instances

Variance in Language

1. The movie was awesome.

2. | could definitely see why this movie received such great
critiques, but at the same time | can’t help but wonder
whether the plot was written by a 12 year-old or by an

award-winning writer.
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Matching Model and
Instance Complexity

Run an efficient model on “easy” instances,

and an expensive model on “hard” instances
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Pretrained BERT Fine-tuning

Prediction

Layer n

Layer n-1

Layer n-2

Layer 2

Layer 1

Layer O
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Faster, less Accurate
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Fastest, least Accurate

Prediction




Our Approach: Training Time

Layer n — >
Prediction

Layer n-1

Layer n-2 >
Prediction

Layer 2 Prediction

Layer 1

Layer O — >
Prediction
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Our Approach: Test Time



Calibrated Confidence
Scores

e We interpret the softmax label scores as model confidence

 We calibrate our model to encourage the confidence level
to correspond to the probability that the model is correct
(DeGroot and Fienberg, 1983)

* We use temperature calibration (Guo et al., 2017)

exp(z;/T)
Z] €XP(Z]/T)

pred = argmax;

e Speed/accuracy tradeoff controlled by a single early-exit
confidence threshold
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Experiments

e BERT-large-uncased (Devlin et al., 2019)

e Qutput classifiers added to layers 0,4,12 and 23

e Datasets

e 3 Text classification, 2 NLI datasets
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Baselines

Prediction
—_—)
Layer n-1

Prediction
Layer n-2 Layer n-2 _—

Prediction
"
*
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Strong Baselines!
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More about our Approach

e No effective growth in parameters

e < 0.005% additional parameters
* Training is not slower

* A single trained model provides multiple options along
the speed/accuracy tradeoff

A single parameter: confidence threshold

e (Caveat: requires batch size=1 during inference
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Recap

Efficient inference

Simple instances exit early, hard instances get more
compute

Training is not slower than the original BERT model

One model fits all!

A single parameter controls for the speed/accuracy curve
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Efficiency

Open Questions

Can we drastically reduce the price of training BERT?
Sample efficiency
What makes a good sparse structure?

What makes a good hyperparameter/random seed?
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Think Green

e Show your work!

o Efficiency, not just accuracy
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More about me

Understanding the NLP Development Cycle

Datasets
Premise Two dogs are running through a field.
Entailment There are animals outdoors.
Neutral Some puppies are running to catch a stick.

Contradiction The pets are sitting on a couch.

b5

Annotation Artifacts
(Schwartz et al., 2017; Gururangan
et al., 2018)

Inoculation by Fine-Tuning:
A Method for Analyzing Challenge
Datasets (Liu et al., 2019)

Models

Such | X | X | X | X
;
. =
ppppppp
nnnnnnn
at
10

Such a great X

** Rational Recurrences
(Schwartz et al., 2018; Peng et al.,
2018; Merrill et al., in review)

“* LSTMs Exploit Linguistic
Attributes of Data (Liu et al., 2018)
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Experiments

eeeeeeeeeeeeeeeeeeeeeeeee

Show your Work
(Dodge et al., 2019;2020)



Amazing Collaborators!
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Think Green

Efficiency research opportunities

Can we drastically reduce the price of training BERT?
/ e Sample efficiency

What makes a good sparse structure/hyperparameter/random seed?

Reporting research opportunities

How much will we gain by pouring more compute?

®
@

A

7\ e Better reporting methods
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