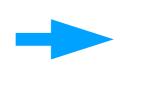
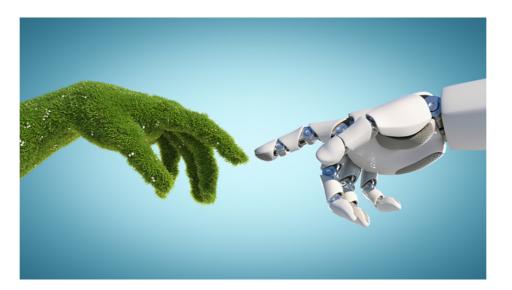
Green NLP

Roy Schwartz

Allen Institute for Al/ University of Washington

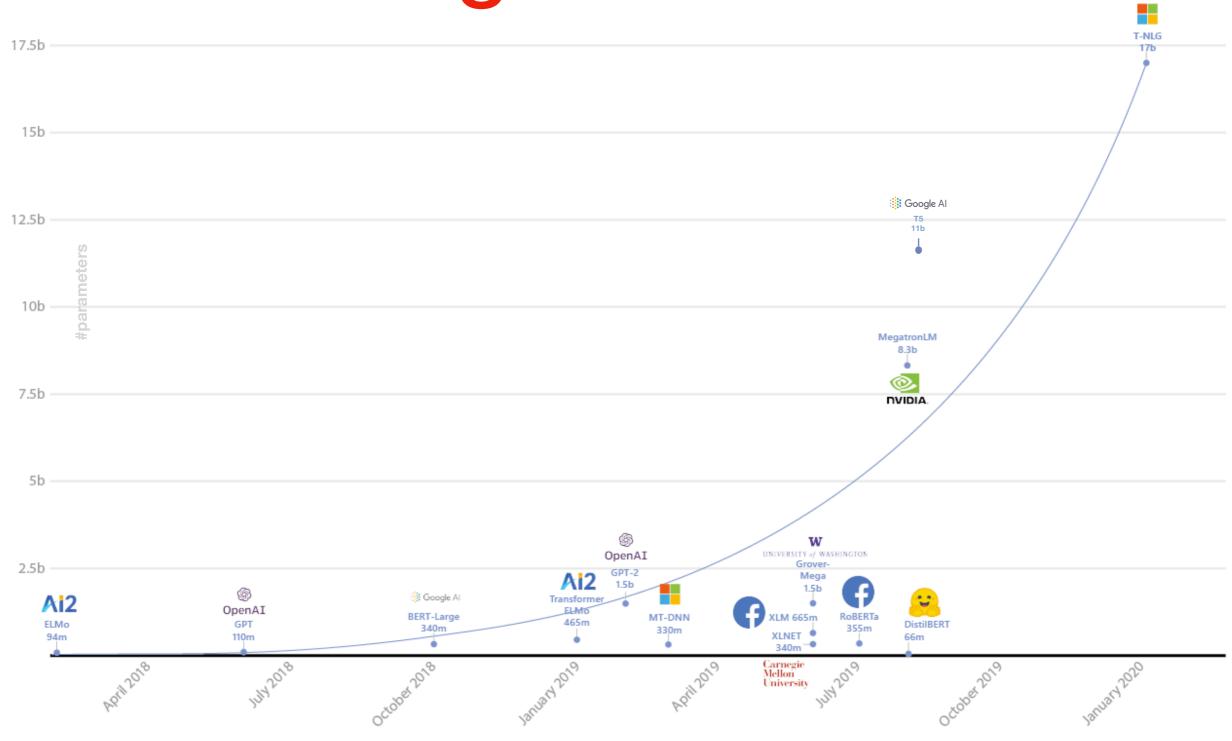


Hebrew University of Jerusalem



THE HEBREW UNIVERSITY OF JERUSALEM

Premise: Big Models



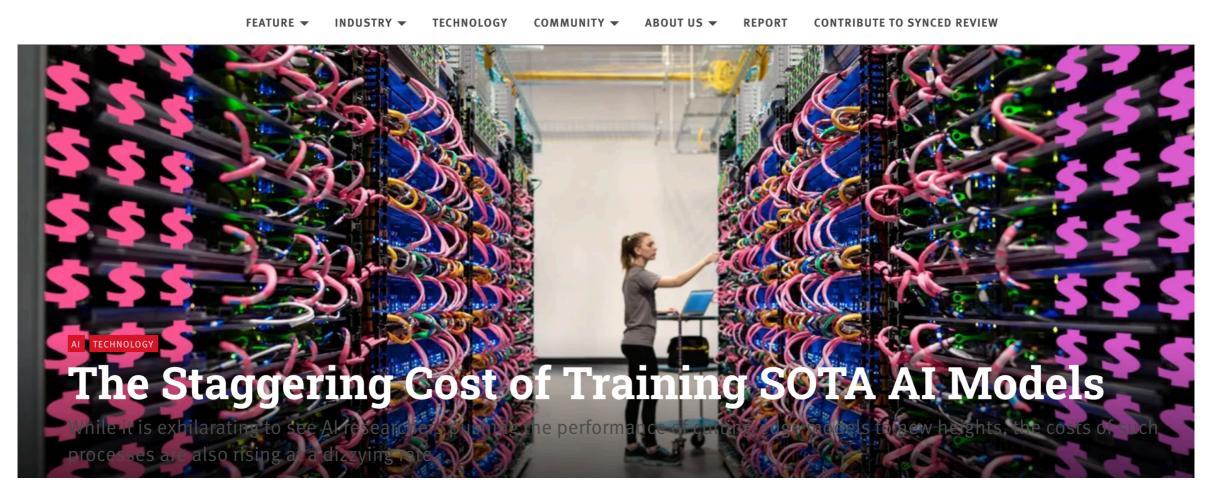
https://www.microsoft.com/en-us/research/blog/turing-nlg-a-17-billion-parameter-language-model-by-microsoft/

https://medium.com/huggingface/distilbert-8cf3380435b5

Problems with Big Models Research community

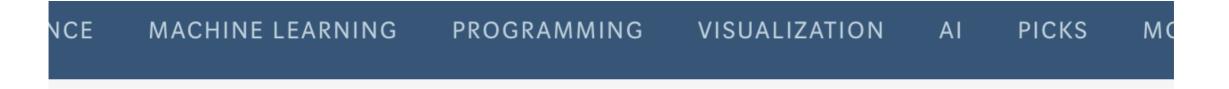
Synced

AI TECHNOLOGY & INDUSTRY REVIEW



https://syncedreview.com/2019/06/27/the-staggering-cost-of-training-sota-ai-models/

Problems with Big Models General AI Community



Too big to deploy: How GPT-2 is breaking servers

A look at the bottleneck around deploying massive models to production

Caleb Kaiser Follow Jan 31 · 7 min read

https://towardsdatascience.com/too-big-to-deploy-how-gpt-2-is-breaking-production-63ab29f0897c

Problems with Big Models Global Community

Consumption	CO ₂ e (lbs)
Air travel, 1 person, NY↔SF	1984
Human life, avg, 1 year	11,023
American life, avg, 1 year	36,156
Car, avg incl. fuel, 1 lifetime	126,000

Training one model (GPU)

NLP pipeline (parsing, SRL)	39
w/ tuning & experiments	78,468
Transformer (big)	192
w/ neural arch. search	626,155

Strubell et al. (2019)

Schwartz*, Dodge*, Smith & Etzioni (2019)

- Goals:
 - Enhance reporting of computational budgets

- Add a *price-tag* for scientific results
- Promote efficiency as a core evaluation for NLP

- Inference, training, model selection (e.g., hyperparameter tuning)
- In addition to accuracy

Big Models are Important

- Push the limits of SOTA
- Released large pre-trained models save compute
- Large models are potentially faster to train
 - Li et al. (2020)
- But, big models have concerning side affects
 - Inclusiveness, adoption, environment
- Our goal is to **mitigate these side affects**

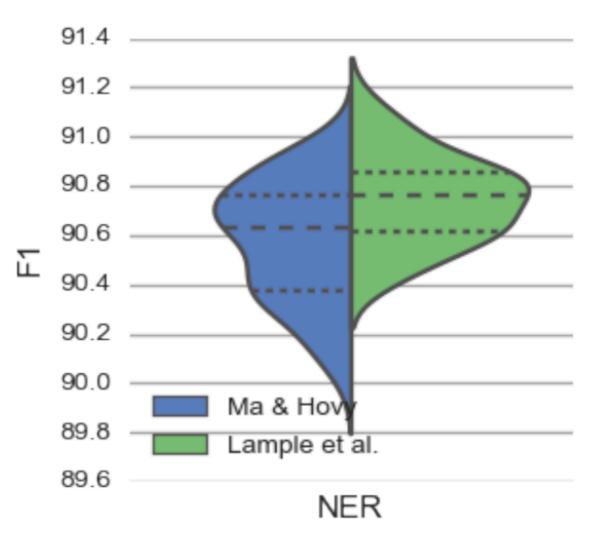
Outline

Enhanced Reporting

Efficient Methods

Is Model A > Model B? Reimers & Gurevych (2017)

Model	F1
Model A	91.21
Model B	90.94

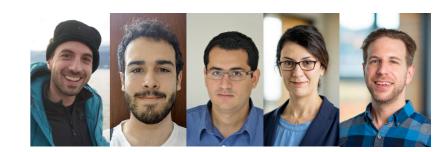


Is Model A > Model B? Melis et al. (2018)

Model	Size	Depth	Valid	Test	Perplexity ()
Medium LSTM, Zaremba et al. (2014)	10M	2	86.2	82.7	
Large LSTM, Zaremba et al. (2014)	24M	2	82.2	78.4	
VD LSTM, Press & Wolf (2016)	51M	2	75.8	73.2	
VD LSTM, Inan et al. (2016)	9M	2	77.1	73.9	
VD LSTM, Inan et al. (2016)	28M	2	72.5	69.0	
VD RHN, Zilly et al. (2016)	24M	10	67.9	65.4	
NAS, Zoph & Le (2016)	25M	-	-	64.0	
NAS, Zoph & Le (2016)	54M	-	-	62.4	
AWD-LSTM, Merity et al. (2017) †	24M	3	60.0	57.3	
LSTM.		1	61.8	50.6	
LSTM		2	63.0	60.8	
LSTM	10M	4	62.4	60.1	
RHN		5	66.0	63.5	Carefully Tuned
NAS		1	65.6	62.7	(1500 trails)
LSTM		1	61.4	50.5	
LSTM		2	62.1	59.6	
LSTM	24M	4	60.9	58.3	
RHN		5	64.8	62.2	
NAS		1	62.1	59.7	

BERT Performs on-par with RoBERTa/ XLNet with better Random Seeds Dodge, Ilharco, Schwartz et al. (2020)

	MRPC			
BERT (Phang et al., 2018)	90.7	70.0	62.1	92.5
BERT (Liu et al., 2019)	88.0	70.4	60.6	93.2
BERT (ours)	91.4	77.3	67.6	95.1
STILTs (Phang et al., 2018)	90.9	83.4	62.1	93.2
XLNet (Yang et al., 2019)	89.2	83.8	63.6	95.6
RoBERTa (Liu et al., 2019)	90.9	86.6	68.0	96.4
ALBERT (Lan et al., 2019)	90.9	<u>89.2</u>	<u>71.4</u>	<u>96.9</u>



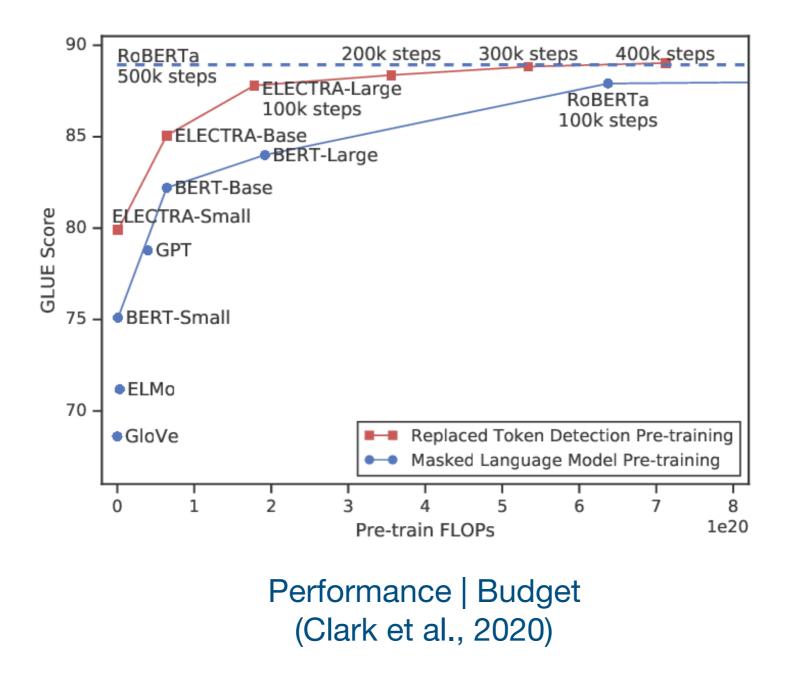
Unfair Comparison

Is Model A > Model B?

Better(?) Comparison

Is Model A > Model B? | Budget

Budget-Aware Comparison



Expected Validation

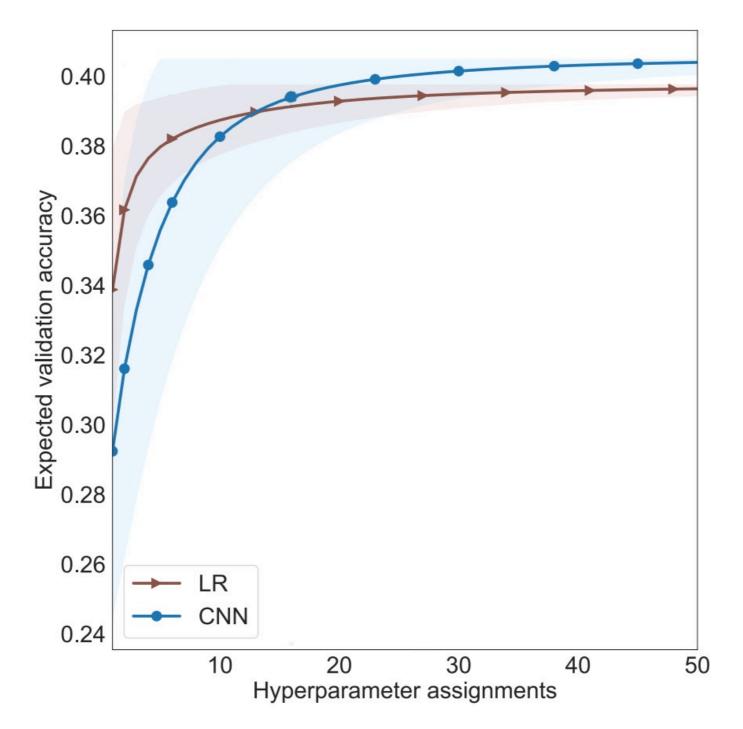
Dodge, Gururangan, Card, Schwartz & Smith, 2019

• Input: a set of experimental results $\{V_1, \dots, V_n\}$

• Define
$$V_k^* = max_{i \in \{1,...,k\}} V_i$$

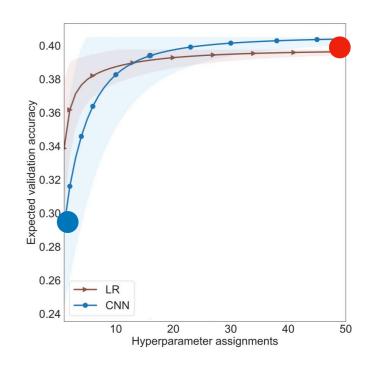
- Expected validation performance: $\mathbb{E}[V_{k}^{*} | k]$
- k=1: $mean(\{V_1, ..., V_n\})$
- k=2: $mean(\{max(V_i, V_j) \forall 1 \le i < j \le n\})$
- k=n: $V_n^* = max_{i \in \{1,...,n\}}V_i$

Example: SST5



Expected Validation Properties

- Doesn't require rerunning any experiment
 - An analysis of existing results
- More comprehensive than
 - Reporting max (the rightmost point in our plots)
 - Reporting mean (the leftmost point in our plots)



<u>https://github.com/dodgejesse/show_your_work</u>

Recap

- Budget-aware comparison
- Expected validation performance
 - Estimation of the amount of computation required to obtain a given accuracy

Reporting
Open Questions

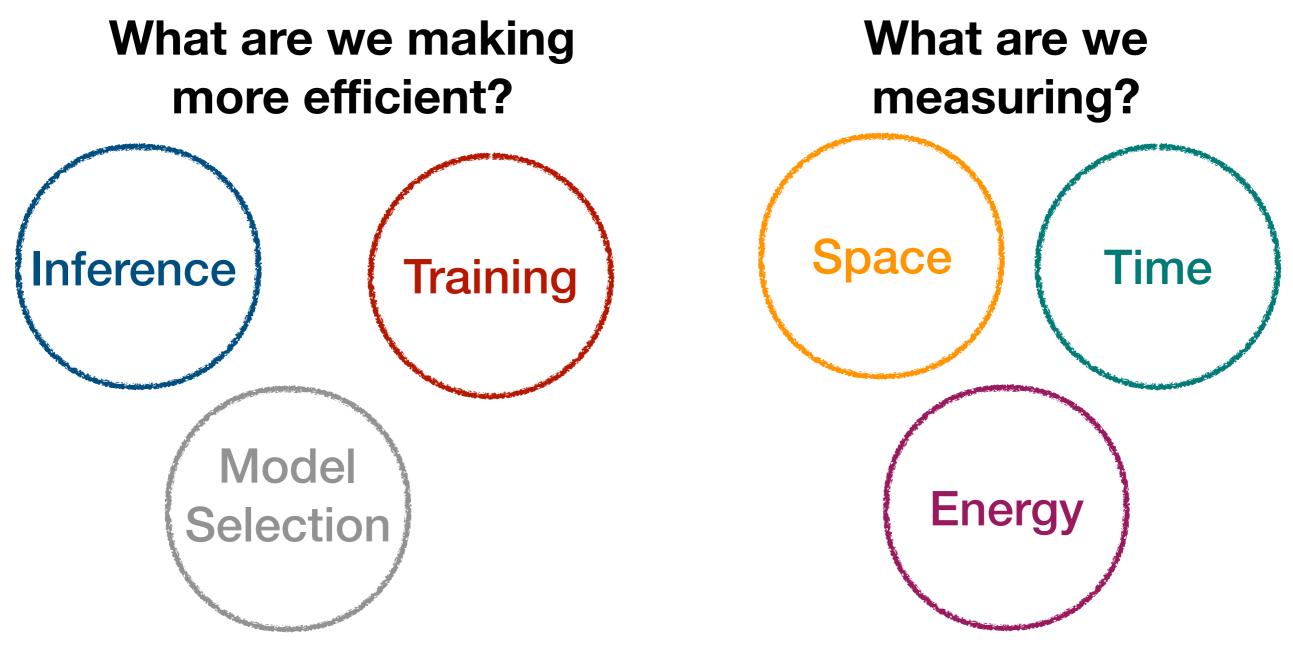
- How much will we gain by pouring **more compute**?
- What should we report?
 - Number of experiments
 - Time
 - FLOPs
 - Energy (KW)
 - Carbon?
- Bigger models, faster training?
 - Li et al. (2020)

Green NLP Goals

Enhanced Reporting

Efficient Methods

Efficient Methods



http://mitchgordon.me/machine/learning/2019/11/18/all-the-ways-to-compress-BERT.html https://blog.inten.to/speeding-up-bert-5528e18bb4ea https://blog.rasa.com/compressing-bert-for-faster-prediction-2/

Efficient #inference

- Model distillation #space; #time; #energy
 - Hinton et al. (2015); MobileBERT (Sun et al., 2019); DistilBERT (Sanh et al., 2019)
- Pruning #space / Structural Pruning #space; #time; #energy
 - Han et al. (2016); SNIP (Lee et al., 2019); LTH (Frankle & Corbin, 2019)
 - MorphNet (Gordon et al., 2018); Michel et al. (2019); LayerDrop (Fan et al., 2020)
 - Dodge, **Schwartz** et al. (2019)
- **Quantization** #space; #time; #energy
 - Gong et al. (2014); Q8BERT (Zafrir et al., 2019); Q-BERT (Shen et al., 2019)

#space Efficiency

- Weight Factorization
 - ALBERT (Lan et al., 2019); Wang et al., 2019
- Weight Sharing
 - Inan et al., 2016; Press & Wolf, 2017

Early Stopping #modelselection; #time; #energy

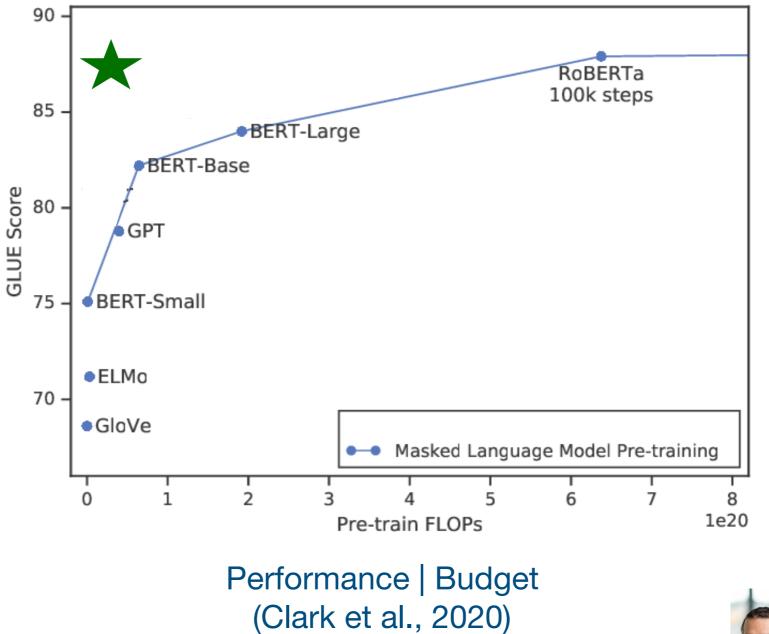
- Stop least promising experiments early on
 - Successive halving (Jamieson & Talwalkar, 2016)
 - Hyperband (Lee et al., 2017)
- Works for random seeds too!
 - Dodge, Ilharco, **Schwartz**, et al. (2020)

Other Efficient Methods

- Replacing dot-product attention with locally-sensitive hashing
 - #inference; #space; #time; #energy
 - Reformer (Kitaev et al., 2020)
- More efficient usage of the input
 - #inference; #training; #space; #time; #energy
 - ELECTRA (Clark et al., 2020)
- Analytical solution of the backward pass
 - #inference; #space
 - Deep equilibrium model (Bai et al., 2019)

Efficiency/Accuracy Tradeoff

#inference; #time; #energy Schwartz et al., in review



Easy/Hard Instances Variance in Language

- 1. The movie was awesome.
- 2. I could definitely see why this movie received such great critiques, but at the same time I can't help but wonder whether the plot was written by a 12 year-old or by an award-winning writer.

Matching Model and Instance Complexity

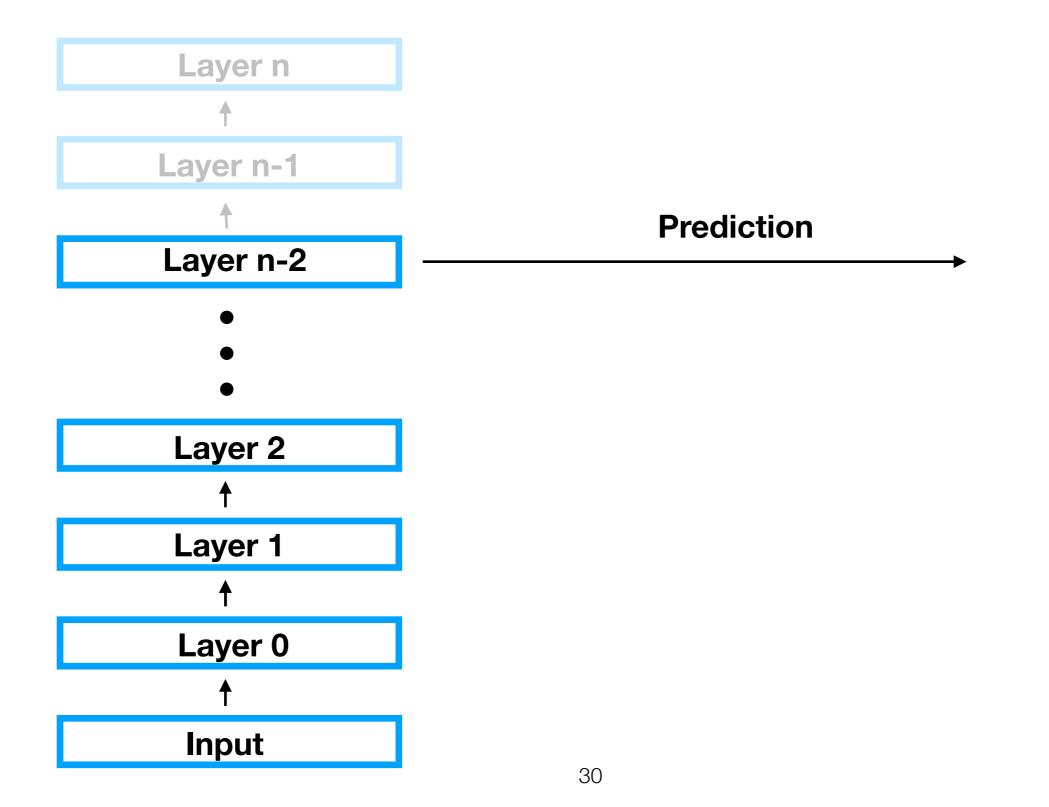
Run an efficient model on "easy" instances,

and an expensive model on "hard" instances

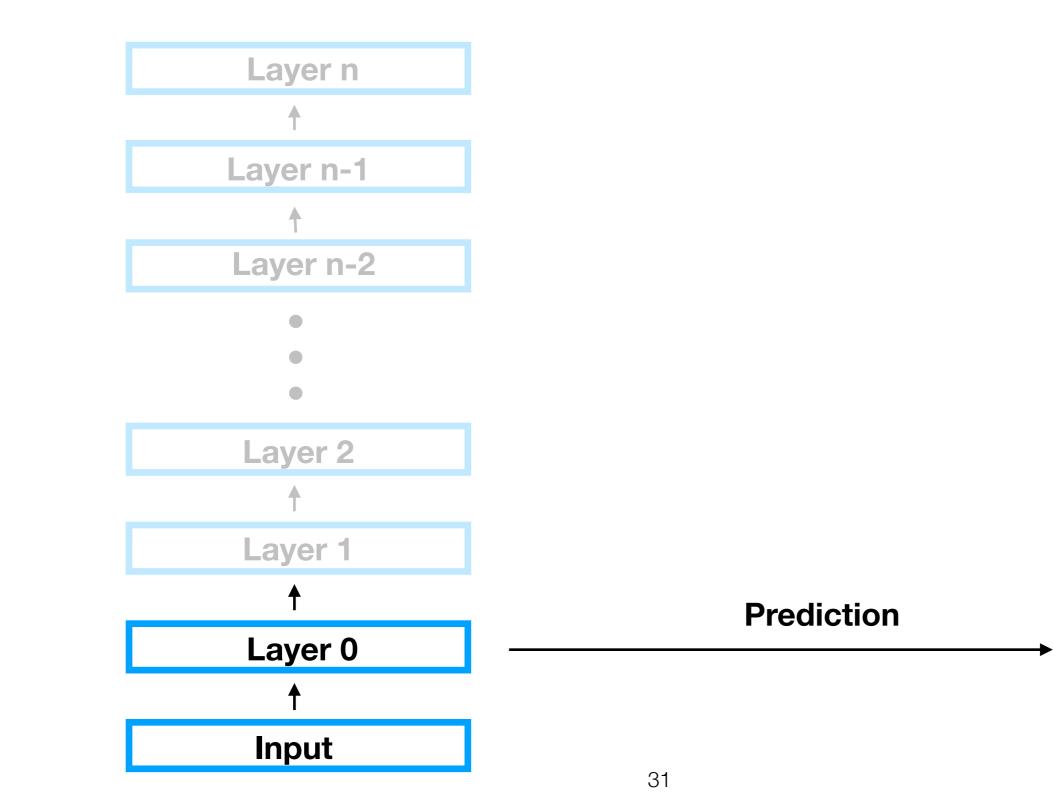
Pretrained BERT Fine-tuning



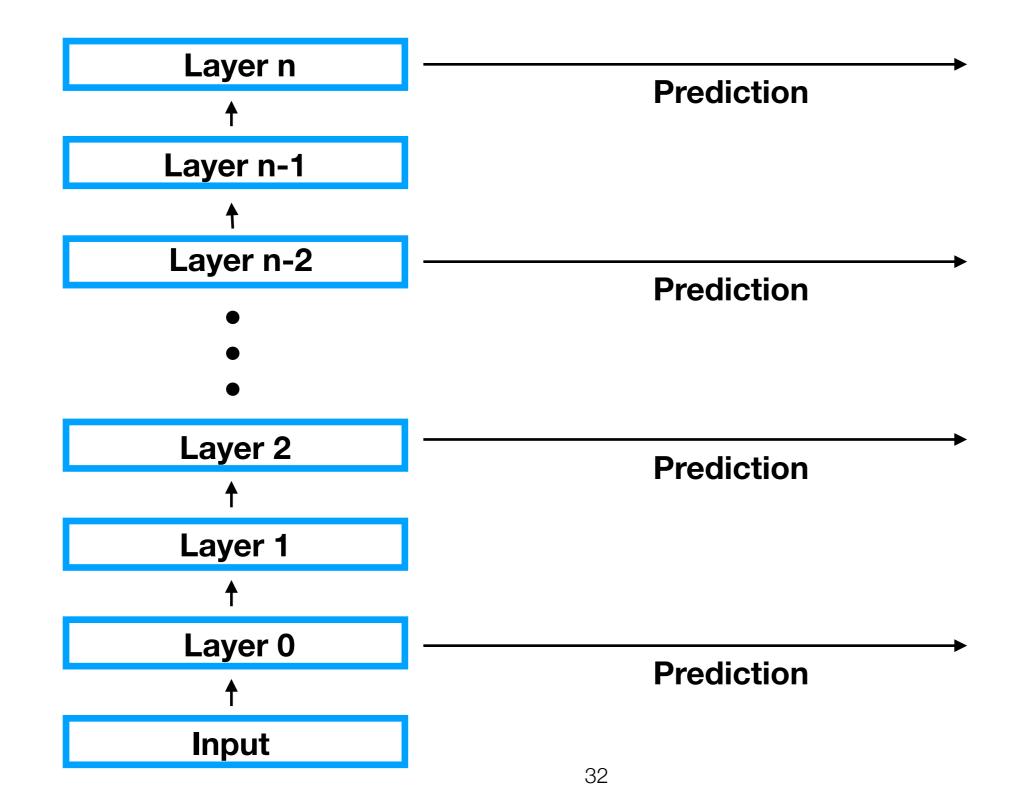
Faster, less Accurate



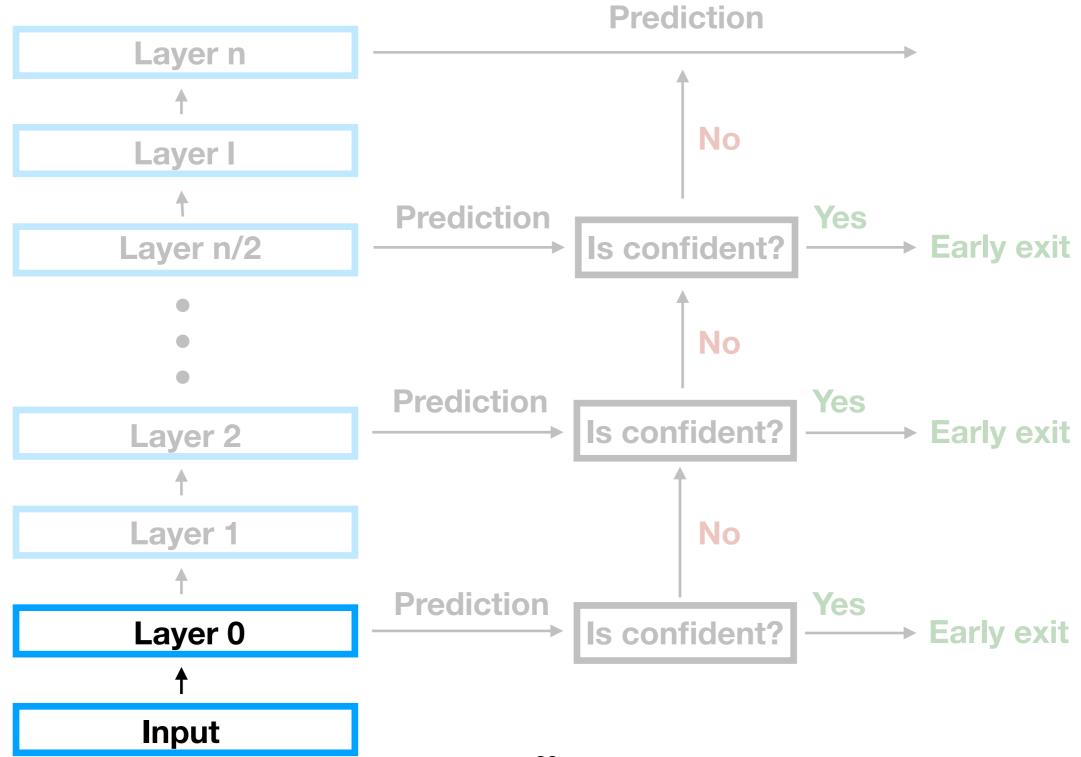
Fastest, least Accurate



Our Approach: Training Time



Our Approach: Test Time



Calibrated Confidence Scores

- We interpret the softmax label scores as model confidence
- We calibrate our model to encourage the confidence level to correspond to the probability that the model is correct (DeGroot and Fienberg, 1983)
 - We use temperature calibration (Guo et al., 2017)

pred =
$$argmax_i \frac{\exp(z_i/T)}{\sum_j \exp(z_j/T)}$$

 Speed/accuracy tradeoff controlled by a single early-exit confidence threshold

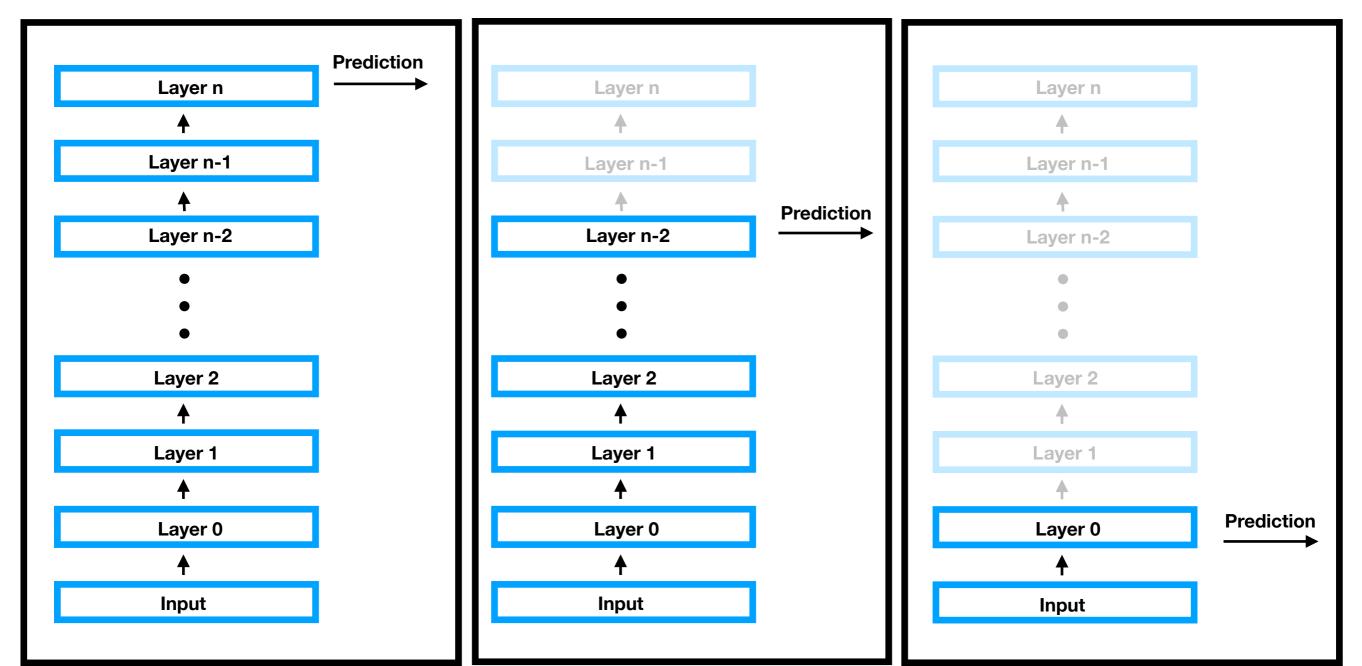
Experiments

- BERT-large-uncased (Devlin et al., 2019)
 - Output classifiers added to layers 0,4,12 and 23
- Datasets
 - 3 Text classification, 2 NLI datasets

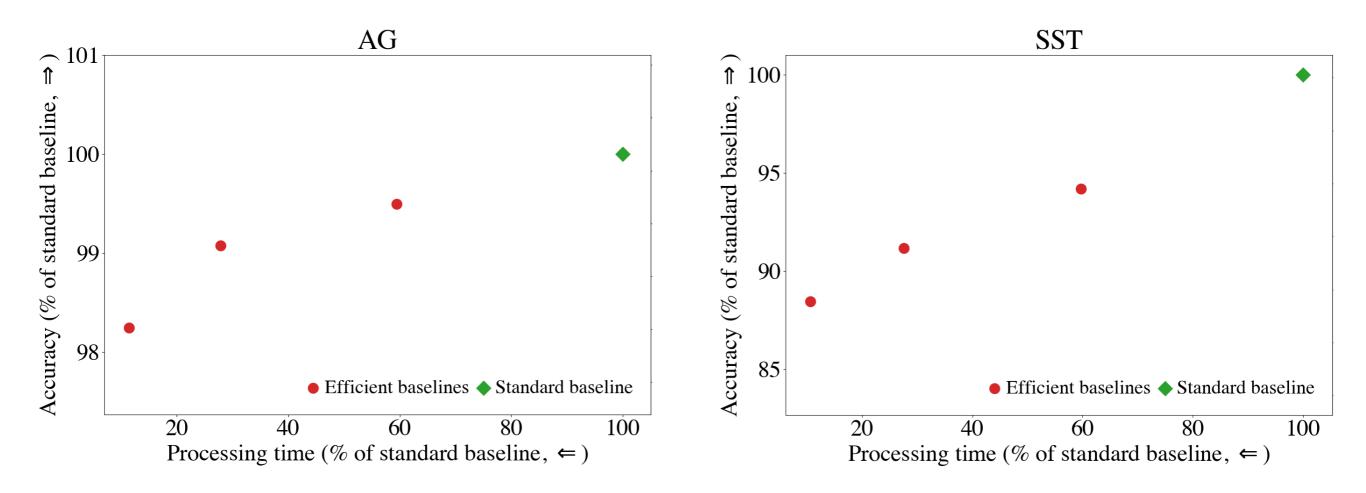
Baselines

Standard baseline

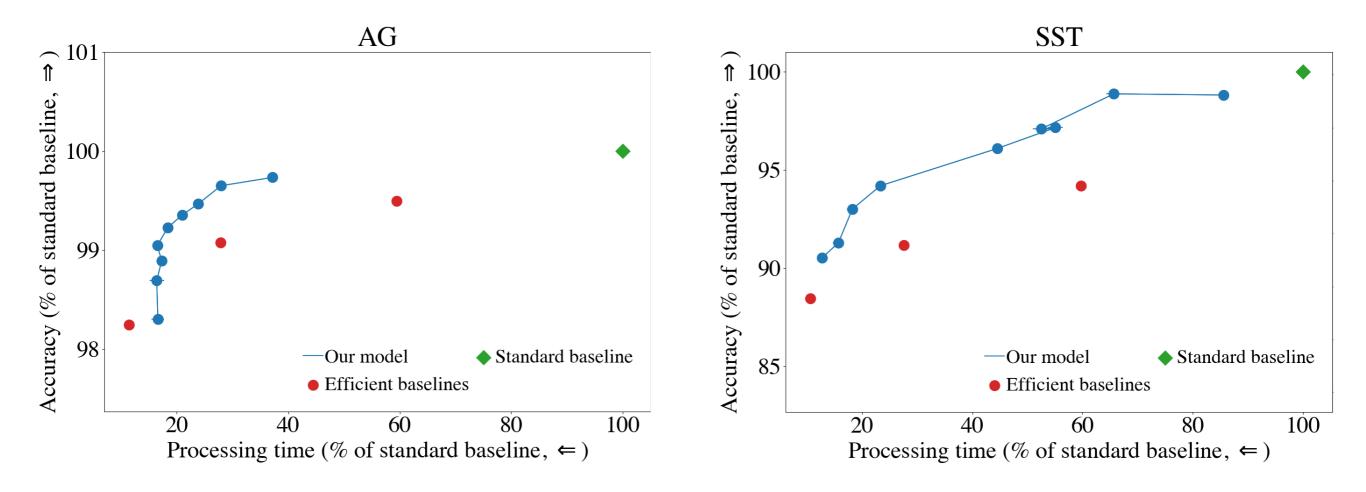
Efficient baselines



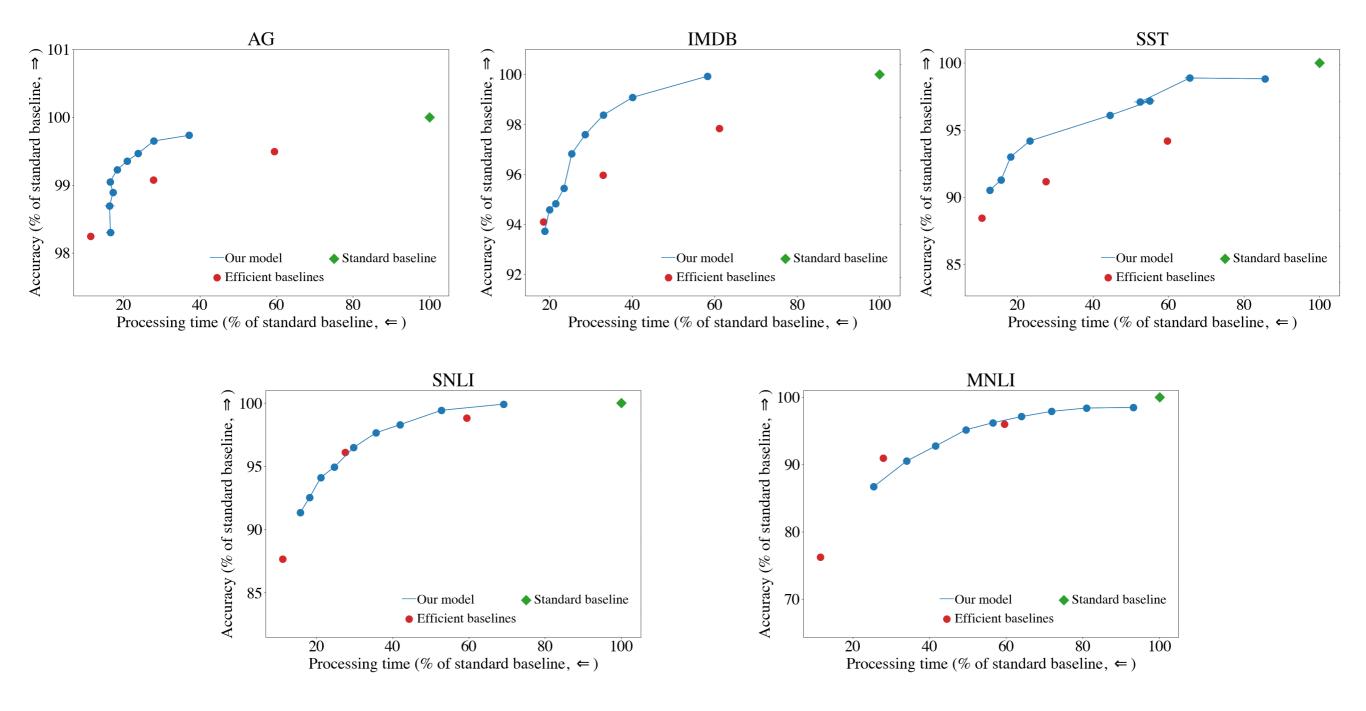
Strong Baselines!



Better Speed/Accuracy Tradeoff



Better Speed-Accuracy Tradeoff



More about our Approach

- No effective growth in parameters
 - < 0.005% additional parameters
- Training is **not** slower
- A single trained model provides multiple options along the speed/accuracy tradeoff
 - A single parameter: confidence threshold
- Caveat: requires batch size=1 during inference

Recap

- Efficient inference
- Simple instances exit early, hard instances get more compute
- Training is not slower than the original BERT model
- One model fits all!
 - A single parameter controls for the speed/accuracy curve

Efficiency Open Questions

- Can we drastically **reduce the price of training BERT**?
- Sample efficiency
- What makes a good sparse structure?
- What makes a good hyperparameter/random seed?

Think Green

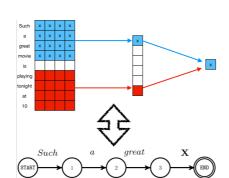
- Show your work!
- Efficiency, not just accuracy

More about me Understanding the NLP Development Cycle

Datasets

Premise	Two dogs are running through a field.
Entailment	There are animals outdoors .
Neutral	Some puppies are running to catch a stick .
Contradiction	The pets are sitting on a couch .

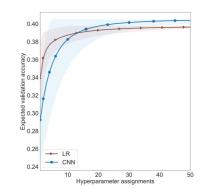
- * Annotation Artifacts (Schwartz et al., 2017; Gururangan et al., 2018)
- Inoculation by Fine-Tuning:
 A Method for Analyzing Challenge
 Datasets (Liu et al., 2019)



Models

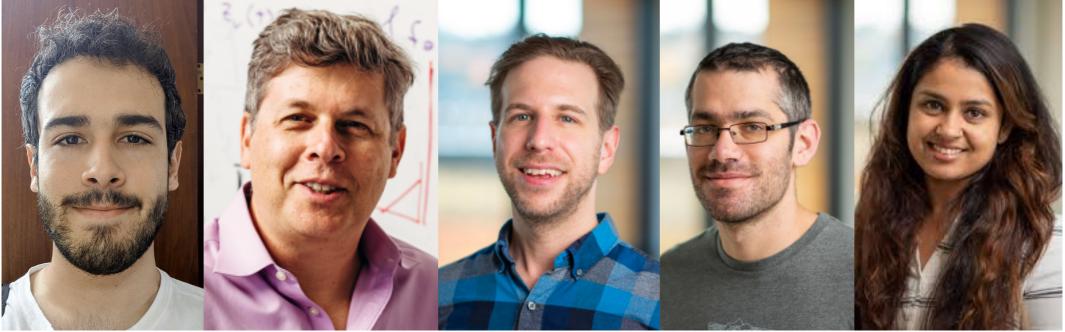
- * Rational Recurrences
 (Schwartz et al., 2018; Peng et al., 2018; Merrill et al., in review)
- * LSTMs Exploit Linguistic Attributes of Data (Liu et al., 2018)

Experiments



Show your Work(Dodge et al., 2019;2020)

Amazing Collaborators!



Cometo Jerusalem!

Think Green

- Efficiency research opportunities
 - Can we drastically **reduce the price of training BERT**?
 - Sample efficiency
 - What makes a good *sparse structure/hyperparameter/random seed*?
- **Reporting** research opportunities
 - How much will we gain by pouring **more compute**?
 - Better reporting methods

