Green Al Roy Schwartz

Hebrew University of Jerusalem

CS Colloquium, EPFL December 2022

THE HEBREW UNIVERSITY OF JERUSALEM

Microsoft Translator

ChatGPT				
-بُنْ- Examples	4 Capabilities	Limitations		
"Explain quantum computing in simple terms"	Remembers what user said earlier in the conversation	May occasionally generate incorrect information		
"Got any creative ideas for a 10 year old's birthday?"	Allows user to provide follow- up corrections	May occasionally produce harmful instructions or biased content		
"How do I make an HTTP request in Javascript?"	Trained to decline inappropriate requests	Limited knowledge of world and events after 2021		

Al Today

Model Size (# params.)

Taken from Lakim et al. (2022)

Scaling 5,000X in 4 Years

Year

Red Al

• Problems: inclusiveness, environment

Green Al

Schwartz*, Dodge*, Smith & Etzioni, CACM 2020

• Red Al

- Problems: inclusiveness, environment
- Green Al

- Enhance reporting of computational budgets
 - Add a *price-tag* for scientific results

	R	
	1)

- Promote efficiency as a core evaluation for AI
- In addition to accuracy

Green Al

Schwartz*, Dodge*, Smith & Etzioni, CACM 2020

Problems with Scaling Inclusiveness

FEATURE TECHNOLOGY

https://syncedreview.com/2019/06/27/the-staggering-cost-of-training-sota-ai-models/

AI TECHNOLOGY & INDUSTRY REVIEW

Training Costs

- BERT (Devlin et al, 2019) was trained on 16 Cloud TPUs for 4 days
- RoBERTa (Liu et al., 2019) was trained on 1024 V100 GPUs for approximately 1 day
- PaLM (Chowdhery et al., 2022) was trained on 6144 TPU v4 chips for 50 days and 3072 TPU v4 chips for 15 days

Training Costs

- BERT (Devlin et al, 2019) was trained on 16 Cloud TPUs for 4 days
- RoBERTa (Liu et al., 2019) was trained on 1024 V100 GPUs for approximately 1 day
- PaLM (Chowdhery et al., 2022) was trained on 6144 TPU v4 chips for 50 days and 3072 TPU v4 chips for 15 days

Number of Authors

Language Models are Few-Shot Learners

Tom B. Brow	vn*	Benjamin	Mann*	Nick F	kyder* Me	lanie Subbiah*
Jared Kaplan [†]	Prafulla	Dhariwal	Arvind Neela	kantan	Pranav Shyam	Girish Sastry
Amanda Askell	Sandhini	Agarwal	Ariel Herbert-	Voss	Gretchen Krueger	Tom Henighan
Rewon Child	Aditya	Ramesh	Daniel M. Zie	gler	Jeffrey Wu	Clemens Winter
Christopher He	sse	Mark Chen	Eric Sigl	er	Mateusz Litwin	Scott Gray
Benjan	nin Chess		Jack Clark		Christopher	Berner
Sam McCan	dlish	Alec Ra	dford	Ilya Su	ıtskever l	Dario Amodei

OpenAI

Number of Authors

Language Models are Few-Shot Learners

Tom B. Brow	vn*	Benjamin	Mann*	Nick F	kyder* Me	lanie Subbiah*
Jared Kaplan [†]	Prafulla	Dhariwal	Arvind Neela	kantan	Pranav Shyam	Girish Sastry
Amanda Askell	Sandhini	Agarwal	Ariel Herbert-	Voss	Gretchen Krueger	Tom Henighan
Rewon Child	Aditya	Ramesh	Daniel M. Zie	gler	Jeffrey Wu	Clemens Winter
Christopher He	sse	Mark Chen	Eric Sigl	er	Mateusz Litwin	Scott Gray
Benjan	nin Chess		Jack Clark		Christopher	Berner
Sam McCan	dlish	Alec Ra	dford	Ilya Su	ıtskever l	Dario Amodei

OpenAI

Number of Authors

PaLM: Scaling Language Modeling with Pathways

Aakanksha Chowdhery^{*} Sharan Narang^{*} Jacob Devlin^{*} Maarten Bosma Gaurav Mishra Adam Roberts Paul Barham Hyung Won Chung Charles Sutton Sebastian Gehrmann Parker Schuh Kensen Shi Sasha Tsvyashchenko Joshua Maynez Abhishek Rao[†] Parker Barnes Yi Tay Noam Shazeer[‡] Vinodkumar Prabhakaran Emily Reif Nan Du Ben Hutchinson Reiner Pope James Bradbury Jacob Austin Michael Isard Guy Gur-Ari Pengcheng Yin Toju Duke Anselm Levskaya Sanjay Ghemawat Sunipa Dev Henryk Michalewski Xavier Garcia Vedant Misra Kevin Robinson Liam Fedus Denny Zhou Daphne Ippolito David Luan[‡] Hyeontaek Lim Barret Zoph Alexander Spiridonov Ryan Sepassi David Dohan Shivani Agrawal Mark Omernick Andrew M. Dai Thanumalayan Sankaranarayana Pillai Marie Pellat Aitor Lewkowycz Erica Moreira Rewon Child Oleksandr Polozov[†] Katherine Lee Zongwei Zhou Xuezhi Wang Brennan Saeta Mark Diaz Orhan Firat Michele Catasta[†] Jason Wei Kathy Meier-Hellstern Douglas Eck Jeff Dean Slav Petrov Noah Fiedel

Google Research

It's a Rich Man's World

Year

Model Size (# params.)

It's a Rich Man's World

Year

Problems with Scaling Environment

Consumption

Air travel, 1 person, Human life, avg, 1 y American life, avg, 1 Car, avg incl. fuel, 1

Training one model (GPU)

NLP pipeline (parsis w/ tuning & exper Transformer (big) w/ neural arch. se

Strubell et al. (2019)

	CO ₂ e (lbs)
NY↔SF	1984
year	11,023
1 year	36,156
lifetime	126,000

ng, SRL)	39
eriments	78,468
	192
earch	626,155

Problems with Scaling Environment

Consumption

Air travel, 1 person, Human life, avg, 1 y American life, avg, Car, avg incl. fuel, 1

Training one model (GPU) NLP pipeline (parsi w/ tuning & expe Transformer (big)

w/ neural arch. se

Strubell et al. (2019)

	CO ₂ e (lbs)
NY⇔SF	1984
year	11,023
1 year	36,156
llifetime	126,000

ng, SRL)	39
eriments	78,468
	192
earch	626,155

Is AI really creating an environmental problem?

Google's Answer: No!

BLOG >

Good News About the Carbon Footprint of Machine Learning Training

TUESDAY, FEBRUARY 15, 2022 Posted by David Patterson, Distinguished Engineer, Google Research, Brain Team

Strubell et al.'s energy estimate for NAS ended up **18.7X** too high for the average organization (...) and **88X** off in emissions for energy-efficient organizations like Google

11

Google's Answer: No!

BLOG >

Good News About the Carbon Footprint of Machine Learning Training

TUESDAY, FEBRUARY 15, 2022

Posted by David Patterson, Distinguished Engineer, Google Research, Brain Team

Strubell et al.'s energy estimate for NAS ended up **18.7X** too high for the average organization (...) and **88X** off in emissions for energy-efficient organizations We need better reporting! like Google

11

Our Answer: Maybe?

Measuring the Carbon Intensity of AI in Cloud Instances

JESSE DODGE, Allen Institute for AI, USA TAYLOR PREWITT, University of Washington, USA REMI TACHET DES COMBES, Microsoft Research Montreal, USA ERIKA ODMARK, Microsoft, USA ROY SCHWARTZ, Hebrew University of Jerusalem, Israel EMMA STRUBELL, Carnegie Mellon University, USA ALEXANDRA SASHA LUCCIONI, Hugging Face, USA NOAH A. SMITH, Allen Institute for AI and University of Washington, USA NICOLE DECARIO, Allen Institute for AI, USA WILL BUCHANAN, Microsoft, USA

CO2 Relative Size Comparison

Green Software Foundation

12

- Evidence around the most expensive experiments
 - More recent models consume 2-3 orders of magnitude more CO₂ (Luccioni et al., 2022) \bullet
 - But these are typically run very few times \bullet

13

- Evidence around the **most expensive experiments**
 - More recent models consume 2-3 orders of magnitude more CO₂ (Luccioni et al., 2022)
 - But these are typically run very few times \bullet
- What about "normal" experiments?
 - Much cheaper, but run hundreds / thousands of times a day? \bullet

13

- Evidence around the most expensive experiments
 - More recent models consume 2-3 orders of magnitude more CO₂ (Luccioni et al., 2022)
 - But these are typically run very few times lacksquare
- What about "normal" experiments?
 - Much cheaper, but run hundreds / thousands of times a day? \bullet
- What about **inference** operations?
 - Very cheap (though increasingly more expensive)
 - Run billions of times a day?
 - 80-90% of AI computation is spent on inference

13

- Evidence around the most expensive experiments
 - More recent models consume 2-3 orders of magnitude more CO₂ (Luccioni et al., 2022)
 - But these are typically run very few times lacksquare
- What about "normal" experiments?
 - Much cheaper, but run hundreds / thousands of times a day? \bullet
- What about **inference** operations?
 - Very cheap (though increasingly more expensive)
 - Run billions of times a day?
 - 80-90% of AI computation is spent on inference

13

• Red Al

- Problems: inclusiveness, environment
- Green Al

- Enhance reporting of computational budgets
 - Add a *price-tag* for scientific results

	R	
	1)

- Promote efficiency as a core evaluation for AI
- In addition to accuracy

Green Al

Schwartz*, Dodge*, Smith & Etzioni, CACM 2020

1	Λ

Cloud Location Matters

CO2 Grams Emitted, BERT Language Modeling

15

Cloud Location Matters

CO2 Grams Emitted, BERT Language Modeling

15

Time of Day Matters Potential Saving with *Flexible Start*

(a) *Flexible Start* optimization for Dense 201.

(b) Flexible Start optimization for 6B parameters Transformer.

16

Time of Day Matters Potential Saving with *Flexible Start*

(a) Flexible Start optimization for Dense 201.

(b) Flexible Start optimization for 6B parameters Transformer.

16

Time of Day Matters Potential Saving with *Flexible Start*

(a) Flexible Start optimization for Dense 201.

(b) Flexible Start optimization for 6B parameters Transformer.

16

Stop training large models?

Large Models are Important

- Push the limits of SOTA
- Released large pre-trained models save compute \bullet
- Large models are potentially faster to train \bullet
 - Li et al. (2020) \bullet

18

Large Models are Important

- Push the limits of SOTA
- Released large pre-trained models save compute
- Large models are potentially faster to train
 - Li et al. (2020) \bullet
- But, large models have concerning side affects
 - Inclusiveness, environment \bullet

18

Large Models are Important

- Push the limits of SOTA
- Released large pre-trained models save compute
- Large models are potentially faster to train
 - Li et al. (2020) \bullet
- But, large models have concerning side affects
 - Inclusiveness, environment \bullet
- Our goal is to **mitigate these side affects**

18

Accuracy or Efficiency?

S. et al. (2020)

Accuracy or Efficiency?

Computational Linguistics

Efficient NLP

Yuki Arase, Osaka University, <u>arase@ist.osaka-u.ac.jp</u> Phil Blunsom, Oxford University, <u>phil.blunsom@cs.ox.ac.uk</u> Mona Diab, George Washington University & Facebook AI, mtdiab@gwu.edu Jesse Dodge, Allen Institute for AI, jessed@allenai.org Iryna Gurevych, Technical University of Darmstadt, gurevych@ukp.informatik.tu-darmstadt.de Percy Liang, Stanford University, pliang@cs.stanford.edu Colin Raffel, UNC & HuggingFace, craffel@gmail.com Andreas Rücklé, Amazon, andreas@rueckle.net Roy Schwartz, The Hebrew University of Jerusalem, <u>roy.schwartz1@mail.huji.ac.il</u> Noah A. Smith, University of Washington & Allen Institute for AI, nasmith@cs.washington.edu Emma Strubell, Carnegie Mellon University & Google, strubell@cmu.edu Yue Zhang, Westlake University, <u>yue.zhang@wias.org.cn</u>

March 2022

Computational Linguistics

Efficient NLP

Yuki Arase, Osaka University, <u>arase@ist.osaka-u.ac.jp</u> Phil Blunsom, Oxford University, phil.blunsom@cs.ox.ac.uk Mona Diab, George Washington University & Facebook AI, mtdiab@gwu.edu Jesse Dodge, Allen Institute for AI, jessed@allenai.org Iryna Gurevych, Technical University of Darmstadt, gurevych@ukp.informatik.tu-darmstadt.de Percy Liang, Stanford University, pliang@cs.stanford.edu Colin Raffel, UNC & HuggingFace, craffel@gmail.com Andreas Rücklé, Amazon, andreas@rueckle.net Roy Schwartz, The Hebrew University of Jerusalem, <u>roy.schwartz1@mail.huji.ac.il</u> Noah A. Smith, University of Washington & Allen Institute for AI, <u>nasmith@cs.washington.edu</u> Emma Strubell, Carnegie Mellon University & Google, strubell@cmu.edu Yue Zhang, Westlake University, <u>yue.zhang@wias.org.cn</u>

• Setting up conference areas that target efficiency

March 2022

Computational Linguistics

Efficient NLP

Yuki Arase, Osaka University, <u>arase@ist.osaka-u.ac.jp</u> Phil Blunsom, Oxford University, <u>phil.blunsom@cs.ox.ac.uk</u> Mona Diab, George Washington University & Facebook AI, mtdiab@gwu.edu Jesse Dodge, Allen Institute for AI, jessed@allenai.org Iryna Gurevych, Technical University of Darmstadt, gurevych@ukp.informatik.tu-darmstadt.de Percy Liang, Stanford University, pliang@cs.stanford.edu Colin Raffel, UNC & HuggingFace, craffel@gmail.com Andreas Rücklé, Amazon, andreas@rueckle.net Roy Schwartz, The Hebrew University of Jerusalem, <u>roy.schwartz1@mail.huji.ac.il</u> Noah A. Smith, University of Washington & Allen Institute for AI, nasmith@cs.washington.edu Emma Strubell, Carnegie Mellon University & Google, strubell@cmu.edu Yue Zhang, Westlake University, <u>yue.zhang@wias.org.cn</u>

- Setting up conference areas that target efficiency
- Encouraging the release of trained models

March 2022

You are here: **Program » Seminar Calendar »** Seminar Homepage

https://www.dagstuhl.de/22232

June 6 – 10 , 2022, Dagstuhl Seminar 22232

Efficient and Equitable Natural Language Processing in the Age of Deep Learning

Organizers

Jesse Dodge (Al2 – Seattle, US) Iryna Gurevych (TU Darmstadt, DE) Roy Schwartz (The Hebrew University of Jerusalem, IL) Emma Strubell (Carnegie Mellon University – Pittsburgh, US)

21

Efficient Methods for Natural Language Processing: A Survey

Marcos Treviso¹⁰* Tianchu Ji^{3*}, Ji-Ung Lee^{7*}, Betty van Aken⁸, Qingqing Cao², Manuel R. Ciosici⁹, Michael Hassid¹, Kenneth Heafield¹³, Sara Hooker⁵, Pedro H. Martins¹⁰, André F. T. Martins¹⁰, Peter Milder³, Colin Raffel⁶, Edwin Simpson⁴, Noam Slonim¹², Niranjan Balasubramanian³, Leon Derczynski¹¹, Roy Schwartz¹ ¹The Hebrew University of Jerusalem, ²University of Washington, ³Stony Brook University, ⁴University of Bristol, ⁵Cohere For AI, ⁶University of North Carolina at Chapel Hill, ⁷Technical University of Darmstadt, ⁸Berliner Hochschule für Technik, ⁹University of Southern California, ¹⁰IST/University of Lisbon & Instituto de Telecomunicações, ¹¹IT University of Copenhagen, ¹²IBM Research, ¹³University of Edinburgh

22

Efficient Methods in NLP

23

Efficient Methods in NLP

ring RoBERTa (I OPT (Zhan	Liu et al., 2019); ng et al., 2022)
Fixed —	Platanios et al. (2019); Press et al. (2021); Agrawal et al. (2021)
ning Self-paced	Wan et al. (2020); Zhu et al. (2021); Zhan et al. (2021)
earning Ein-Dor et a et al. (2022);	al. (2020); Yuan Lee et al. (2022a)
pting GPT-3 (Bro PET (Schick a	wn et al., 2020); and Schütze, 2021)
rse Switch Transformer ation Sparsefinder (T	er (Fedus et al., 2022); Freviso et al., 2022)
neter Perceiver (Jac ency Subformer (I	egle et al., 2021); Reid et al., 2021)
Compressed Memory	Compressive Transformer (Rae et al., 2020); ∞-former (Martins et al., 2022c)
- Fixed Pattern	Longformer (Beltagy et al., 2020); BigBird (Zaheer et al., 2020)
Learned Pattern	Reformer (Kitaev et al., 2020); Routing Transformer (Roy et al., 2021)
Low-rank Approximation	Performer (Choromanski et al., 2021); RFA (Peng et al., 2020)
l-based	ndelwal et al., 2019); geaud et al., 2022)
Decoder only	GPT-3 (Brown et al., 2020); PaLM (Chowdhery et al., 2022)
ning §4 Encoder only	BERT (Devlin et al., 2019); ELECTRA (Clark et al., 2020)
Encoder-Decoder —	T5 (Raffel et al., 2020); BART (Lewis et al., 2020a)
Parameter- Efficiency	Adapters (Houlsby et al., 2019); LoRA (Hu et al., 2022)
ning §5 Multi-task Learning	T5 (Raffel et al., 2020); $(IA)^3$ (Liu et al., 2022a)
Zero-shot Learning	T0 (Sanh et al., 2022); FLAN (Wei et al., 2022a)
Magnitude Pruning Movement Prunin	g (Gordon et al., 2020); ng (Sanh et al., 2020)
ation TinyBERT (J MobileBERT	Jiao et al., 2020); (Sun et al., 2020)
tation Tied Transformers (D Adaptive Transformer	Dabre et al., 2020); Depthers (Elbayad et al., 2020)
zation 8-bit Transformers Q-BERT (S	(Bhandare et al., 2019); hen et al., 2020)

24

Filtering

- Non-text
 - Gibrish, HTML \bullet
- Text in other languages
- Foul text
- Typically done via simple, rule-based heuristics \bullet
 - Noisy process

25

Smart Filtering Swayamdipta, S. et al., EMNLP 2020

- Not all training instances contribute the same to learning
 - Some are "easy-to-learn", others are more challenging \bullet

26

Dataset Map

WI

100% train

random

ambiguous

INOG. Val. (ID)	WSC (OOD)
$79.7_{0.2}$	$86.0_{0.1}$
$73.3_{1.3}$	85.60.4
78.7 _{0.4}	87.6 0.6

28

W

100% train

random

ambiguous

INOG. Val. (ID)	WSC (OOD)
79.7 _{0.2}	$86.0_{0.1}$
$73.3_{1.3}$	85.60.4
78.7 _{0.4}	87.6 0.6

28

W

100% train

random

ambiguous

INOG. Val. (ID)	WSC (OOD)
79.7 _{0.2}	$86.0_{0.1}$
$73.3_{1.3}$	85.60.4
78.7 _{0.4}	87.6 0.6

28

28

28

28

Baseline MLM

A tiger [MASK] eating the carrot

- Current practice: **randomly** mask some of the words in the sentence
 - Many of them are **stop words** and **punctuation**

Baseline MLM

A tiger [MASK] eating the carrot

- Current practice: **randomly** mask some of the words in the sentence
 - Many of them are **stop words** and **punctuation**
- Our proposal: only mask content words

Baseline MLM

A tiger [MASK] eating the carrot

- Current practice: **randomly** mask some of the words in the sentence
 - Many of them are **stop words** and **punctuation**
- Our proposal: only mask **content** words

Baseline MLM

A tiger [MASK] eating the carrot

Our method

A [MASK] is eating the carrot

30

30

30

Similar accuracy, twice as fast

30

Few-shot Learning

• Only use a handful of examples to train a model

Few-shot Learning

- Only use a handful of examples to train a model
- Prompting
 - Brown et al. (2020), Schick & Sch¨utze, 2021)

Translate English to French:	<	task desci
sea otter => loutre de mer	<	examples
peppermint => menthe poivrée	\leftarrow	
plush girafe => girafe peluche	< ──	
cheese =>	<	prompt

31

Few-shot Learning

- Only use a handful of examples to train a model
- Prompting
 - Brown et al. (2020), Schick & Sch¨utze, 2021)
- Non-prompting methods
 - Mahabadi et al. (2022)

Translate English to French:	<	task desci
sea otter => loutre de mer	<	examples
peppermint => menthe poivrée	<i>←</i>	
plush girafe => girafe peluche	< ──	
cheese =>	<	prompt

31

Data Efficiency **Open Questions**

• Do we really need massive web-scale data to train our models?

- Can we get along with less?
- Sorscher et al. (2022)

Efficient Methods in NLP

ring RoBERTa (I OPT (Zhan	Liu et al., 2019); ng et al., 2022)
Fixed —	Platanios et al. (2019); Press et al. (2021); Agrawal et al. (2021)
ning Self-paced	Wan et al. (2020); Zhu et al. (2021); Zhan et al. (2021)
earning Ein-Dor et a et al. (2022);	al. (2020); Yuan Lee et al. (2022a)
pting GPT-3 (Bro PET (Schick a	wn et al., 2020); and Schütze, 2021)
rse Switch Transformer ation Sparsefinder (T	er (Fedus et al., 2022); Freviso et al., 2022)
neter Perceiver (Jac ency Subformer (I	egle et al., 2021); Reid et al., 2021)
Compressed Memory	Compressive Transformer (Rae et al., 2020); ∞-former (Martins et al., 2022c)
- Fixed Pattern	Longformer (Beltagy et al., 2020); BigBird (Zaheer et al., 2020)
Learned Pattern	Reformer (Kitaev et al., 2020); Routing Transformer (Roy et al., 2021)
Low-rank Approximation	Performer (Choromanski et al., 2021); RFA (Peng et al., 2020)
l-based	ndelwal et al., 2019); geaud et al., 2022)
Decoder only	GPT-3 (Brown et al., 2020); PaLM (Chowdhery et al., 2022)
ning §4 Encoder only	BERT (Devlin et al., 2019); ELECTRA (Clark et al., 2020)
Encoder-Decoder —	T5 (Raffel et al., 2020); BART (Lewis et al., 2020a)
Parameter- Efficiency	Adapters (Houlsby et al., 2019); LoRA (Hu et al., 2022)
ning §5 Multi-task Learning	T5 (Raffel et al., 2020); $(IA)^3$ (Liu et al., 2022a)
Zero-shot Learning	T0 (Sanh et al., 2022); FLAN (Wei et al., 2022a)
Magnitude Pruning Movement Prunin	g (Gordon et al., 2020); ng (Sanh et al., 2020)
ation TinyBERT (J MobileBERT	Jiao et al., 2020); (Sun et al., 2020)
tation Tied Transformers (D Adaptive Transformer	Dabre et al., 2020); Depthers (Elbayad et al., 2020)
zation 8-bit Transformers Q-BERT (S	(Bhandare et al., 2019); hen et al., 2020)

33

• The method for text representation

• Also for vision, speech, combio, ...

...

- The method for text representation
 - Also for vision, speech, combio, ...
- Each word attends to all other words

. . .

- The method for text representation
 - Also for vision, speech, combio, ...
- Each word attends to all other words

- The method for text representation
 - Also for vision, speech, combio, ...
- Each word attends to all other words

- The method for text representation
 - Also for vision, speech, combio, ...
- Each word attends to all other words

- The method for text representation
 - Also for vision, speech, combio, ...
- Each word attends to all other words

- The method for text representation
 - Also for vision, speech, combio, ...
- Each word attends to all other words
- O(n²) complexity in the sentence length n

- The method for text representation
 - Also for vision, speech, combio, ...
- Each word attends to all other words
- O(n²) complexity in the sentence length n
- Fatal for long sequences
 - Books, articles, etc.

- Key idea: approximate the attention function using random Fourier features
 - Rahimi and Recht (2007) \bullet

35

- Key idea: approximate the attention function using random Fourier features
 - Rahimi and Recht (2007)
- Some math

35

- Key idea: approximate the attention function using random Fourier features
 - Rahimi and Recht (2007)
- Some math

35

- Key idea: approximate the attention function using random Fourier features
 - Rahimi and Recht (2007)
- Some math
- Linear runtime and memory requirements

35

Better Efficiency-Accuracy Tradeoff

Efficient transformer baselines Transformer \bigcirc

Better Efficiency-Accuracy Tradeoff

12

• **Key intuition**: treat the sentence as memory of size *n*

. . .

• **Key intuition**: treat the sentence as memory of size *n*

- **Key intuition**: treat the sentence as memory of size *n*
- Key idea: replace this memory with a fixed size memory of (fixed) size *k* << *n*
 - Instead of attending *n* tokens, each word attends to k tokens

- **Key intuition**: treat the sentence as memory of size *n*
- Key idea: replace this memory with a fixed size memory of (fixed) size *k* << *n*
 - Instead of attending *n* tokens, each word attends to k tokens
- Overall complexity linear in *n*
 - With constant k \bullet

Speed

ABC Results

Memory

38

- Model doesn't collapse
 - Average accuracy loss of 8% only

- Model doesn't collapse
 - Average accuracy loss of 8% only
- Potential for huge savings

Efficient Modeling **Open Questions**

- Can we find the next generation of Transformers?
 - S4 (Gu et al., 2021) ullet
- Should we store knowledge in the model parameters?
 - **Retrieval-based models**
 - Gu et al (2018); Lewis et al. (2020); Li et al. (2022); Borgeaud et al. (2022)

Efficient Methods in NLP

ring — RoBERTa (J OPT (Zhat	Liu et al., 2019); ng et al., 2022)
Fixed —	Platanios et al. (2019); Press et al. (2021); Agrawal et al. (2021)
ning Self-paced	Wan et al. (2020); Zhu et al. (2021); Zhan et al. (2021)
earning Ein-Dor et al. (2022);	al. (2020); Yuan Lee et al. (2022a)
GPT-3 (Bro PET (Schick a	wn et al., 2020); and Schütze, 2021)
rse Switch Transform ation Sparsefinder (1	er (Fedus et al., 2022); Freviso et al., 2022)
neter Perceiver (Ja ency Subformer (J	egle et al., 2021); Reid et al., 2021)
Compressed Memory	Compressive Transformer (Rae et al., 2020); ∞ -former (Martins et al., 2022c)
- Fixed Pattern	Longformer (Beltagy et al., 2020); BigBird (Zaheer et al., 2020)
Learned Pattern	Reformer (Kitaev et al., 2020); Routing Transformer (Roy et al., 2021)
Low-rank Approximation	Performer (Choromanski et al., 2021); RFA (Peng et al., 2020)
l-based — <i>k</i> NN-LM (Khandelwal et al., 2019); RETRO (Borgeaud et al., 2022)	
Decoder only	GPT-3 (Brown et al., 2020); PaLM (Chowdhery et al., 2022)
ning §4 Encoder only	BERT (Devlin et al., 2019); ELECTRA (Clark et al., 2020)
Encoder-Decoder —	T5 (Raffel et al., 2020); BART (Lewis et al., 2020a)
Parameter- Efficiency	Adapters (Houlsby et al., 2019); LoRA (Hu et al., 2022)
ning §5 Multi-task Learning	T5 (Raffel et al., 2020); (IA) ³ (Liu et al., 2022a)
Zero-shot Learning	T0 (Sanh et al., 2022); FLAN (Wei et al., 2022a)
Magnitude Pruning Movement Pruning	g (Gordon et al., 2020); ng (Sanh et al., 2020)
ation TinyBERT (. MobileBERT	Jiao et al., 2020); (Sun et al., 2020)
Tied Transformers (L Adaptive Transformer	Dabre et al., 2020); Depthers (Elbayad et al., 2020)
zation — 8-bit Transformers (Bhandare et al., 2019); Q-BERT (Shen et al., 2020)	

Efficient Methods in NLP

ring — RoBERTa (J OPT (Zhat	Liu et al., 2019); ng et al., 2022)
Fixed —	Platanios et al. (2019); Press et al. (2021); Agrawal et al. (2021)
ning Self-paced	Wan et al. (2020); Zhu et al. (2021); Zhan et al. (2021)
earning Ein-Dor et al. (2022);	al. (2020); Yuan Lee et al. (2022a)
GPT-3 (Bro PET (Schick a	wn et al., 2020); and Schütze, 2021)
rse Switch Transform ation Sparsefinder (1	er (Fedus et al., 2022); Freviso et al., 2022)
neter Perceiver (Ja ency Subformer (J	egle et al., 2021); Reid et al., 2021)
Compressed Memory	Compressive Transformer (Rae et al., 2020); ∞ -former (Martins et al., 2022c)
- Fixed Pattern	Longformer (Beltagy et al., 2020); BigBird (Zaheer et al., 2020)
Learned Pattern	Reformer (Kitaev et al., 2020); Routing Transformer (Roy et al., 2021)
Low-rank Approximation	Performer (Choromanski et al., 2021); RFA (Peng et al., 2020)
l-based — <i>k</i> NN-LM (Khandelwal et al., 2019); RETRO (Borgeaud et al., 2022)	
Decoder only	GPT-3 (Brown et al., 2020); PaLM (Chowdhery et al., 2022)
ning §4 Encoder only	BERT (Devlin et al., 2019); ELECTRA (Clark et al., 2020)
Encoder-Decoder —	T5 (Raffel et al., 2020); BART (Lewis et al., 2020a)
Parameter- Efficiency	Adapters (Houlsby et al., 2019); LoRA (Hu et al., 2022)
ning §5 Multi-task Learning	T5 (Raffel et al., 2020); (IA) ³ (Liu et al., 2022a)
Zero-shot Learning	T0 (Sanh et al., 2022); FLAN (Wei et al., 2022a)
Magnitude Pruning Movement Pruning	g (Gordon et al., 2020); ng (Sanh et al., 2020)
ation TinyBERT (. MobileBERT	Jiao et al., 2020); (Sun et al., 2020)
Tied Transformers (L Adaptive Transformer	Dabre et al., 2020); Depthers (Elbayad et al., 2020)
zation — 8-bit Transformers (Bhandare et al., 2019); Q-BERT (Shen et al., 2020)	

42

Inference and Compression §6

Efficient Inference

43

Model distillation

• Aka, student/teacher model

• Hinton et al., 2015; Sun et al., 2019; Sanh et al., 2019

43

Model distillation

• Pruning / Structural Pruning

- Dodge, **S.**, et al., 2019

• Aka, student/teacher model

• Hinton et al., 2015; Sun et al., 2019; Sanh et al., 2019

• Han et al., 2016; Lee et al., 2019; Frankle & Corbin, 2019; Gordon et al., 2018; Michel et al., 2019; Fan et al., 2020

Model distillation

• Pruning / Structural Pruning

- Dodge, **S.**, et al., 2019

Quantization

• Aka, student/teacher model

• Hinton et al., 2015; Sun et al., 2019; Sanh et al., 2019

• Han et al., 2016; Lee et al., 2019; Frankle & Corbin, 2019; Gordon et al., 2018; Michel et al., 2019; Fan et al., 2020

• Gong et al., 2014; Zafrir et al., 2019; Shen et al., 2019

Run an efficient model on "easy" instances,

Run an efficient model on "easy" instances,

Run an efficient model on "easy" instances,

Run an efficient model on "easy" instances,

Our Approach: Training Time

Our Approach: Training Time

Prediction

Prediction

Prediction

Our Approach: Test Time

Our Approach: Test Time

3 times faster, within 1% of full model

5 times faster, within 1% of full model

Efficiency **Open Questions**

• What makes a good sparse structure?

Efficiency **Open Questions**

- What makes a good sparse structure?
- Combining different methods

Think Green!

• Red Al

- Problems: inclusiveness, environment
- Green Al

- Enhance reporting of computational budgets
 - Add a *price-tag* for scientific results

		2	
(\mathbb{P})	
	-	5	

- Promote efficiency as a core evaluation for AI
- In addition to accuracy

50

Think Green!

• Red Al

- Problems: inclusiveness, environment
- Green Al

- Enhance reporting of computational budgets
 - Add a *price-tag* for scientific results

		2	
(\mathbb{P})	
	-	5	

- Promote efficiency as a core evaluation for AI
- In addition to accuracy

50