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Scaling

5,000X in 4 Years

3Taken from Lakim et al. (2022)
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• Enhance reporting of computational budgets


• Add a price-tag for scientific results


• Promote efficiency as a core evaluation for AI


• In addition to accuracy
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Problems with Scaling

Inclusiveness

https://syncedreview.com/2019/06/27/the-staggering-cost-of-training-sota-ai-models/
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Training Costs

• BERT (Devlin et al, 2019) was trained on 16 Cloud TPUs for 4 days


• RoBERTa (Liu et al., 2019) was trained on 1024 V100 GPUs for approximately 1 day


• PaLM (Chowdhery et al., 2022) was trained on 6144 TPU v4 chips for 50 days and 
3072 TPU v4 chips for 15 days
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It's a Rich Man's World 
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Problems with Scaling

Environment

Strubell et al. (2019)
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Is AI really creating an 
environmental problem?
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Google’s Answer: No!
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Strubell et al.’s energy estimate for NAS ended up 
18.7X too high for the average organization (…) and 
88X off in emissions for energy-efficient organizations 

like Google
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AI and the Environment
• Evidence around the most expensive experiments 

• More recent models consume 2-3 orders of magnitude more CO2 (Luccioni et al., 2022)


• But these are typically run very few times
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Green AI

Schwartz*, Dodge*, Smith & Etzioni, CACM 2020

• Red AI


• Problems: inclusiveness, environment


• Green AI 


• Enhance reporting of computational budgets


• Add a price-tag for scientific results


• Promote efficiency as a core evaluation for AI


• In addition to accuracy
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Cloud Location Matters
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Cloud Location Matters

15

~3x difference



 Time of Day Matters
Potential Saving with Flexible Start
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We need better reporting!



Stop training large models?
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Large Models are Important
• Push the limits of SOTA

• Released large pre-trained models save compute

• Large models are potentially faster to train


• Li et al. (2020)
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Large Models are Important
• Push the limits of SOTA

• Released large pre-trained models save compute

• Large models are potentially faster to train


• Li et al. (2020)

• But, large models have concerning side affects


• Inclusiveness, environment

• Our goal is to mitigate these side affects
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Accuracy or Efficiency?
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S. et al. (2020)

Accuracy or Efficiency?
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• Setting up conference areas that target efficiency 

20



• Setting up conference areas that target efficiency 

• Encouraging the release of trained models
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• Non-text

• Gibrish, HTML


• Text in other languages


• Foul text


• Typically done via simple, rule-based heuristics


• Noisy process 

25

Filtering



• Not all training instances contribute the same to learning


• Some are “easy-to-learn”, others are more challenging
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Smart Filtering

Swayamdipta, S. et al., EMNLP 2020



Dataset Map
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Experiments

WinoGrande, RoBERTa-Large
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Data Efficient Masked Language 
Modeling for Vision and Language


Bitton, Stanovsky, Elhadad & S., Findings of EMNLP 2021
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Data Efficient Training

Amount of data (%)
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Data Efficient Training

Similar accuracy, twice as fast

Amount of data (%)
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Few-shot Learning
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Few-shot Learning

31

• Only use a handful of examples to 
train a model

• Prompting

• Brown et al. (2020), Schick & Sch¨utze, 

2021)

• Non-prompting methods

• Mahabadi et al. (2022)



Data Efficiency 

Open Questions

• Do we really need massive web-scale data to train our models?


• Can we get along with less?


• Sorscher et al. (2022)

32
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• The method for text representation


• Also for vision, speech, combio, … 

34

q0 q1 q2 qn

k0 k1 k2 kn

Transformers

Vaswani et al., 2017



• The method for text representation


• Also for vision, speech, combio, … 

• Each word attends to all other words

34

q0 q1 q2 qn

k0 k1 k2 kn

Transformers

Vaswani et al., 2017



• The method for text representation


• Also for vision, speech, combio, … 

• Each word attends to all other words

34

q0 q1 q2 qn

k0 k1 k2 kn

Transformers

Vaswani et al., 2017



• The method for text representation


• Also for vision, speech, combio, … 

• Each word attends to all other words

34

q0 q1 q2 qn

k0 k1 k2 kn

Transformers

Vaswani et al., 2017



• The method for text representation


• Also for vision, speech, combio, … 

• Each word attends to all other words

34

q0 q1 q2 qn

k0 k1 k2 kn

Transformers

Vaswani et al., 2017



• The method for text representation


• Also for vision, speech, combio, … 

• Each word attends to all other words

34

q0 q1 q2 qn

k0 k1 k2 kn

Transformers

Vaswani et al., 2017



• The method for text representation


• Also for vision, speech, combio, … 

• Each word attends to all other words

• O(n2) complexity in the sentence length n

34

q0 q1 q2 qn

k0 k1 k2 kn

Transformers

Vaswani et al., 2017



• The method for text representation


• Also for vision, speech, combio, … 

• Each word attends to all other words

• O(n2) complexity in the sentence length n

• Fatal for long sequences


• Books, articles, etc.

34

q0 q1 q2 qn

k0 k1 k2 kn

Transformers

Vaswani et al., 2017



Random Feature Attention 
Peng, Pappas, Yogatama, S., Smith, & Kong, ICLR 2021 

spotlight presentation
• Key idea: approximate the attention function using random Fourier features 

• Rahimi and Recht (2007)
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Random Feature Attention 
Peng, Pappas, Yogatama, S., Smith, & Kong, ICLR 2021 

spotlight presentation
• Key idea: approximate the attention function using random Fourier features 

• Rahimi and Recht (2007)

• Some math 

• Linear runtime and memory requirements

35



Better Efficiency-Accuracy Tradeoff

36
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ABC: Attention with Bounded-memory Control 
Peng, Kasai, Pappas, Yogatama, Wu, Kong, S. & Smith, ACL 2022

• Key intuition: treat the sentence as 
memory of size n
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ABC: Attention with Bounded-memory Control 
Peng, Kasai, Pappas, Yogatama, Wu, Kong, S. & Smith, ACL 2022

• Key intuition: treat the sentence as 
memory of size n

• Key idea: replace this memory with a 
fixed size memory of (fixed) size k << n 
• Instead of attending n tokens, each word attends 

to k tokens

• Overall complexity linear in n 
• With constant k

37

q0 q1 q2 qn

k0 k1 k2 kn



ABC Results

38

Speed Memory



 How Much Does Attention Actually Attend?
Hassid, Peng, Rotem, Kasai, Montero, Smith & S., Findings of EMNLP 2022 
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• Average accuracy loss of 8% only



 How Much Does Attention Actually Attend?
Hassid, Peng, Rotem, Kasai, Montero, Smith & S., Findings of EMNLP 2022 

39

• Model doesn’t collapse


• Average accuracy loss of 8% only

• Potential for huge savings



Efficient Modeling

Open Questions

• Can we find the next generation of Transformers?


• S4 (Gu et al., 2021)


• Should we store knowledge in the model parameters?


• Retrieval-based models


• Gu et al (2018); Lewis et al. (2020); Li et al. (2022); Borgeaud et al. (2022)

40
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Efficient Inference
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Efficient Inference

• Model distillation


• Aka, student/teacher model


• Hinton et al., 2015; Sun et al., 2019; Sanh et al., 2019

• Pruning / Structural Pruning


• Han et al., 2016;Lee et al., 2019; Frankle & Corbin, 2019; Gordon et al., 2018; Michel et al., 2019; Fan et al., 2020


• Dodge, S., et al., 2019

• Quantization


• Gong et al., 2014; Zafrir et al., 2019; Shen et al., 2019
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Matching Model and Instance Complexity

S. et al., ACL 2020

Run an efficient model on “easy” instances, 

and an expensive model on “hard” instances

Inference Time 
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Tradeoff
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5 times faster, within 1% of full model 



Efficiency

Open Questions

• What makes a good sparse structure?
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Efficiency

Open Questions

• What makes a good sparse structure?

• Combining different methods
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• Red AI


• Problems: inclusiveness, environment


• Green AI 


• Enhance reporting of computational budgets


• Add a price-tag for scientific results


• Promote efficiency as a core evaluation for AI


• In addition to accuracy
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