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Efficiency
Current Approaches

e Model distillation

 Hinton et al. (2015); MobileBERT (Sun et al., 2019);
DistilBERT (Sanh et al., 2019)

- * Pruning / Structural Pruning

, [j;h e Han et al. (2016); SNIP (Lee et al., 2019); LTH (Frankle &

% Corbin, 2019); MorphNet (Gordon et al., 2018); Michel et
al. (2019); LayerDrop (Fan et al., 2020); Dodge, Schwartz
et al. (2019)

e Quantization

e (Gong et al. (2014); Q8BERT (Zafrir et al., 2019); Q-BERT
(Shen et al., 2019)



Data in NLP

ssumption: Instances are |ID




Not all Instances are Alike

1. The movie was awesome.

2. | could definitely see why this movie received such great
critiques, but at the same time | can’t help but wonder
whether the plot was written by a 12 year-old or by an
award-winning writer.



Not all Instances are Alike

1. The movie was awesome.

2. | could definitely see why this movie received such great
critiques, but at the same time | can’t help but wonder
whether the plot was written by a 12 year-old or by an

award-winning writer.

What is the capital of Italy? Which country won the largest

number of swimming medals
in the 2016 summer olympics?

Would a glass of water that
falls from 10 feet down to a
trampoline break?




Outline

Not all Instances are Alike

o Efficient inference
e Schwartz et al., ACL 2020
e Efficient training
e Swayamdipta et al., EMNLP 2020

 Better masked language modeling for vision and language

e Bitton et al., Findings of EMNLP 2021



Case Study 1:

Efficient Inference
Schwartz et al., ACL 2020

Some instances require less
processing than others
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Our Approach: Training Time
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Our Approach: Test Time
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Calibrated Confidence
Scores

* |nterpret the calibrated softmax label scores as model
confidence

 We use temperature calibration (Guo et al., 2017)
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Calibrated Confidence
Scores

* |nterpret the calibrated softmax label scores as model
confidence

 We use temperature calibration (Guo et al., 2017)

e Speed/accuracy tradeoff controlled by a single early-
exit confidence threshold

12



Baselines

Standard baseline
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Baselines
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Experimental Results:

Strong Baselines!
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Strong Baselines!
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3 times faster, within 1% of full model
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More about our Approach

* No effective growth in parameters

e < 0.005% additional parameters
* Training is not slower

* A single trained model provides multiple options along
the speed/accuracy tradeoff

* A single parameter: confidence threshold

e (Caveat: requires batch size=1 during inference
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Case Study 2: Efficient Training

Swayamdipta, Schwartz et al., EMNLP 2020

Some instances are more
valuable for training than
others
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High-Level Idea

e Divide the instances in a dataset into different groups
¢ /dentify the groups that are most valuable for learning

* [rain on those groups only, leading to substantially
faster training
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Training Dynamics

e Assume a model trained for K epochs
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e Assume a model trained for K epochs

e At each epoch, the model makes predictions on each
training sample

 This leads to a vector of size K for each training instance
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Training Dynamics

e Assume a model trained for K epochs

e At each epoch, the model makes predictions on each
training sample

 This leads to a vector of size K for each training instance

e \We compute two measures on each vector:

e Mean

e Variability
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Training Dynamics
Toy Example
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Dataset Map Example
SNLI, RoBERTa-Large
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Sample-Efficient Training

® easy-to-learn instances provide little value to training

e (Can we use training dynamics to select the most
valuable instances?

22



Experiments
WinoGrande, RoBERTa-Large

WINOG. Val. (ID)

100% train 79.70.2
random 73.31.3
forgetting 75.51.3
AL-uncertainty 75.70.8
AL-greedyK 74.20.4
AFLite 76.80.8
ambiguous 78.70.4
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Experiments
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Experiments
WinoGrande, RoBERTa-Large

WINOG. Val. (ID)

T J T A 2= - '8 LS - < NS RS- NS Py N
A Sl M Y o NNV N o AT P P E, Bt Ag e Y vy -~z 2% SCE s T B S B 2% S aeta,

{ random 31.3 %

forgetting 75.51.3
AL-uncertainty 75.770 .8
AL-greedyK 74.20.4
AFLite 76.80.8

33%

ambiguous 78.70.4

23



Experiments
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Experiments
WinoGrande, RoBERTa-Large

WINOG. Val. (ID) WSC (OOD)
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Experiments
WinoGrande, RoBERTa-Large

WINOG. Val. (ID) WSC (OOD)

i 100% train s

random 73.31 3

forgetting 75.51.3
AL-uncertainty 75.70.8
AL-greedyK




Recap

e Some instances contribute more to learning

* We select the ones with the highest variance in
confidence level across training

e 3Xx reduction in training time

* Minimal reduction in ID performance

e Improvement on OOD performance
- Limitations
Model-dependent

Requires training on the full dataset first

24



Case Study 3:

Efficient Pre-training for Vision and Language
Bitton, Stanovsky, Elhadad & Schwartz, Findings of EMNLP 2021

Some words are more
valuable for pre-training than
others
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MLM in Vision and Language

e Virtually all vision pre-training works (Shin et al., 2021)
follow BERT and randomly mask 15% of the tokens

20



MLM in Vision and Language

e Virtually all vision pre-training works (Shin et al., 2021)
follow BERT and randomly mask 15% of the tokens

e Of the masked tokens, roughly one half are stop-words
or punctuation

20



MLM in Vision and Language

e Virtually all vision pre-training works (Shin et al., 2021)
follow BERT and randomly mask 15% of the tokens

e Of the masked tokens, roughly one half are stop-words
or punctuation

* We propose better masking strategies for V&L MLM

20



MLM in Vision and Language

e Virtually all vision pre-training works (Shin et al., 2021)
follow BERT and randomly mask 15% of the tokens

e Of the masked tokens, roughly one half are stop-words
or punctuation

* We propose better masking strategies for V&L MLM

e See Yonatan’s talk for more details!
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Improved Downstream Performance

Especially on Low-Resource Settings

VQA
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Not all Instances are Alike

Recap

* Efficient inference by selecting the right tool for the job

o [Efficient fine-tuning by selecting the most ambiguous
examples

e Efficient multi-modal pre-training by better masking
Strategies
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Amazing Collaborators!
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Not all instances are alike

Recap

* Efficient inference by selecting the right tool for the job

o [Efficient fine-tuning by selecting the most ambiguous
examples

e Efficient multi-modal pre-training by better masking
Strategies
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