Not all Textual Instances are Alike: Efficient NLP by Better Understanding of our Data

Roy Schwartz

Hebrew University of Jerusalem SustainNLP 2021

Premise: Big Models 10,000X in 3 Years

Efficiency Current Approaches

Efficiency Current Approaches

Efficiency Current Approaches

Model distillation

 Hinton et al. (2015); MobileBERT (Sun et al., 2019); DistilBERT (Sanh et al., 2019)

Pruning / Structural Pruning

- Han et al. (2016); SNIP (Lee et al., 2019); LTH (Frankle & Corbin, 2019); MorphNet (Gordon et al., 2018); Michel et al. (2019); LayerDrop (Fan et al., 2020); Dodge, Schwartz et al. (2019)
- Quantization
 - Gong et al. (2014); Q8BERT (Zafrir et al., 2019); Q-BERT (Shen et al., 2019)

Data in NLP

Basic Assumption: Instances are IID

Not all Instances are Alike

- 1. The movie was awesome.
- 2. I could definitely see why this movie received such great critiques, but at the same time I can't help but wonder whether the plot was written by a 12 year-old or by an award-winning writer.

Not all Instances are Alike

- 1. The movie was awesome.
- 2. I could definitely see why this movie received such great critiques, but at the same time I can't help but wonder whether the plot was written by a 12 year-old or by an award-winning writer.

What is the capital of Italy?

Which country won the largest number of swimming medals in the 2016 summer olympics?

Would a glass of water that falls from 10 feet down to a trampoline break?

Outline

Not all Instances are Alike

- Efficient inference
 - Schwartz et al., ACL 2020
- Efficient training
 - Swayamdipta et al., EMNLP 2020
- Better masked language modeling for vision and language
 - Bitton et al., Findings of EMNLP 2021

Case Study 1: Efficient Inference Schwartz et al., ACL 2020

Some instances require less processing than others

Run an efficient model on "easy" instances, and an expensive model on "hard" instances

Run an efficient model on "easy" instances, and an expensive model on "hard" instances

Our Approach: Training Time

Our Approach: Training Time

Calibrated Confidence Scores

- Interpret the calibrated softmax label scores as model confidence
 - We use temperature calibration (Guo et al., 2017)

Calibrated Confidence Scores

- Interpret the calibrated softmax label scores as model confidence
 - We use temperature calibration (Guo et al., 2017)
- Speed/accuracy tradeoff controlled by a single earlyexit confidence threshold

Baselines

Standard baseline

Baselines

Standard baseline

Efficient baselines

Experimental Results: Strong Baselines!

Experimental Results: Strong Baselines!

Experimental Results: Strong Baselines!

3 times faster, within 1% of full model

5 times faster, within 1% of full model

- No effective growth in parameters
 - < 0.005% additional parameters

- No effective growth in parameters
 - < 0.005% additional parameters
- Training is **not** slower

- No effective growth in parameters
 - < 0.005% additional parameters
- Training is **not** slower
- A single trained model provides multiple options along the speed/accuracy tradeoff
 - A single parameter: confidence threshold

- No effective growth in parameters
 - < 0.005% additional parameters
- Training is **not** slower
- A single trained model provides multiple options along the speed/accuracy tradeoff
 - A single parameter: confidence threshold
- Caveat: requires batch size=1 during inference

Case Study 2: Efficient Training

Swayamdipta, Schwartz et al., EMNLP 2020

Some instances are **more valuable** for training than others

High-Level Idea

- Divide the instances in a dataset into different groups
- Identify the groups that are **most valuable** for learning
- Train on those groups only, leading to substantially faster training

Training Dynamics

• Assume a model trained for K epochs

Training Dynamics

- Assume a model trained for K epochs
- At each epoch, the model makes predictions on each training sample
 - This leads to a vector of size K for each training instance

Training Dynamics

- Assume a model trained for K epochs
- At each epoch, the model makes predictions on each training sample
 - This leads to a vector of size K for each training instance
- We compute two measures on each vector:
 - Mean
 - Variability

Training Dynamics Toy Example

Dataset Map Example SNLI, RoBERTa-Large

Sample-Efficient Training

- easy-to-learn instances provide little value to training
- Can we use training dynamics to select the *most valuable* instances?

	WINOG. Val. (ID)
100% train	$79.7_{0.2}$
random	$73.3_{1.3}$
forgetting	$75.5_{1.3}$
AL-uncertainty	$75.7_{0.8}$
AL-greedyK	$74.2_{0.4}$
AFLite	$76.8_{0.8}$
ambiguous	78.7 _{0.4}

WINOG. Val. (ID)

100% train	79.7 _{0.2}
random	$73.3_{1.3}$
forgetting	$75.5_{1.3}$
AL-uncertainty	$75.7_{0.8}$
AL-greedyK	$74.2_{0.4}$
AFLite	$76.8_{0.8}$
ambiguous	78.7 _{0.4}

		WINOG. Val. (ID)
	100% train	79.7 _{0.2}
33%	random	$73.3_{1.3}$
	forgetting	75.51.3
	AL-uncertainty	$75.7_{0.8}$
	AL-greedyK	$74.2_{0.4}$
	AFLite	$76.8_{0.8}$
	ambiguous	78.7 _{0.4}

		WINOG. Val. (ID)
	100% train	79.7 _{0.2}
	random	$73.3_{1.3}$
	forgetting	$75.5_{1.3}$
33%	AL-uncertainty	$75.7_{0.8}$
	AL-greedyK	$74.2_{0.4}$
	AFLite	76.80.8
	ambiguous	78.7 _{0.4}

		WINOG. Val. (ID)	WSC (OOD)
	100% train	79.7 _{0.2}	86.00.1
	random	$73.3_{1.3}$	85.60.4
33%	forgetting AL-uncertainty AL-greedyK AFLite	$\begin{array}{c} 75.5_{1.3} \\ 75.7_{0.8} \\ 74.2_{0.4} \\ 76.8_{0.8} \end{array}$	$\begin{array}{r} 84.8_{0.7} \\ 85.7_{0.8} \\ 86.5_{0.5} \\ 86.6_{0.6} \end{array}$
	ambiguous	78.7 _{0.4}	87.6 0.6

		WINOG. Val. (ID)	WSC (OOD)
	100% train	79.7 _{0.2}	86.0 _{0.1}
33%	random	$73.3_{1.3}$	85.60.4
	forgetting AL-uncertainty	$75.5_{1.3}$ $75.7_{0.8}$	$84.8_{0.7}$ $85.7_{0.8}$
	AL-greedyK AFLite	$74.2_{0.4} \\ 76.8_{0.8}$	$86.5_{0.5}$ $86.6_{0.6}$
	ambiguous	78.7 _{0.4}	87.6 0.6

		WINOG. Val. (ID)	WSC (OOD)
	100% train	79.7 _{0.2}	86.0 _{0.1}
33%	random	73.31.3	85.60.4
	forgetting AL-uncertainty AL-greedyK AFLite	$\begin{array}{c} 75.5_{1.3} \\ 75.7_{0.8} \\ 74.2_{0.4} \\ 76.8_{0.8} \end{array}$	$\begin{array}{r} 84.8_{0.7} \\ 85.7_{0.8} \\ 86.5_{0.5} \\ 86.6_{0.6} \end{array}$
	ambiguous	78.7 _{0.4}	87.6 0.6

Similar results on SNLI, MNLI, QNLI

Recap

- Some instances contribute more to learning
- We select the ones with the highest variance in confidence level across training
- 3x reduction in training time
 - Minimal reduction in ID performance
 - **Improvement** on OOD performance
- Limitations
 - Model-dependent
 - Requires training on the full dataset first

Case Study 3: Efficient Pre-training for Vision and Language

Bitton, Stanovsky, Elhadad & Schwartz, Findings of EMNLP 2021

Some **words** are **more valuable** for pre-training than others

 Virtually all vision pre-training works (Shin et al., 2021) follow BERT and randomly mask 15% of the tokens

- Virtually all vision pre-training works (Shin et al., 2021) follow BERT and randomly mask 15% of the tokens
- Of the masked tokens, roughly one half are stop-words or punctuation

- Virtually all vision pre-training works (Shin et al., 2021) follow BERT and randomly mask 15% of the tokens
- Of the masked tokens, roughly one half are stop-words or punctuation
- We propose better masking strategies for V&L MLM

- Virtually all vision pre-training works (Shin et al., 2021) follow BERT and randomly mask 15% of the tokens
- Of the masked tokens, roughly one half are stop-words or punctuation
- We propose better masking strategies for V&L MLM
- See Yonatan's talk for more details!

Especially on Low-Resource Settings

% of training data

Especially on Low-Resource Settings

% of training data

Especially on Low-Resource Settings

% of training data

Especially on Low-Resource Settings

% of training data

Similar accuracy, twice as fast

Especially on Low-Resource Settings

% of training data

Similar accuracy, twice as fast

Not all Instances are Alike Recap

- Efficient inference by selecting the right tool for the job
- Efficient fine-tuning by selecting the most ambiguous examples
- Efficient multi-modal pre-training by better masking strategies

Amazing Collaborators!

Not all instances are alike Recap

- Efficient **inference** by selecting *the right tool for the job*
- Efficient fine-tuning by selecting the most ambiguous examples
- Efficient multi-modal pre-training by better masking strategies

