#### Not all Textual Instances are Alike: Efficient NLP by Better Understanding of our Data

#### **Roy Schwartz**

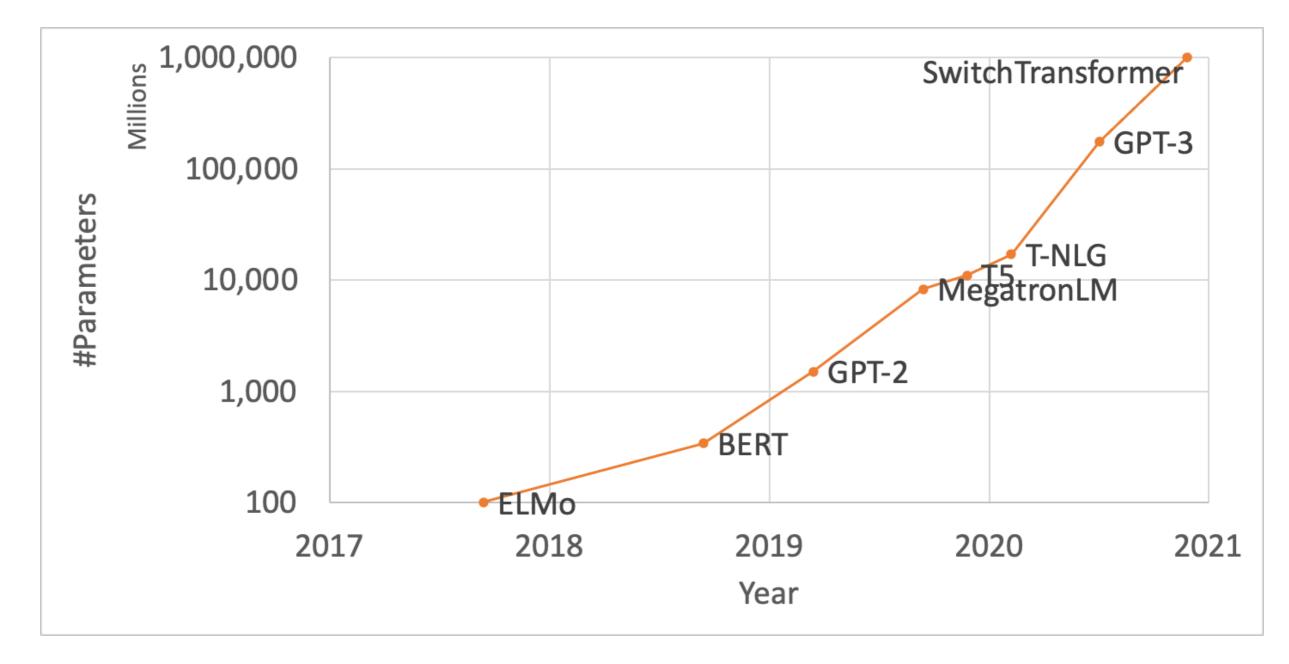
Hebrew University of Jerusalem SustainNLP 2021

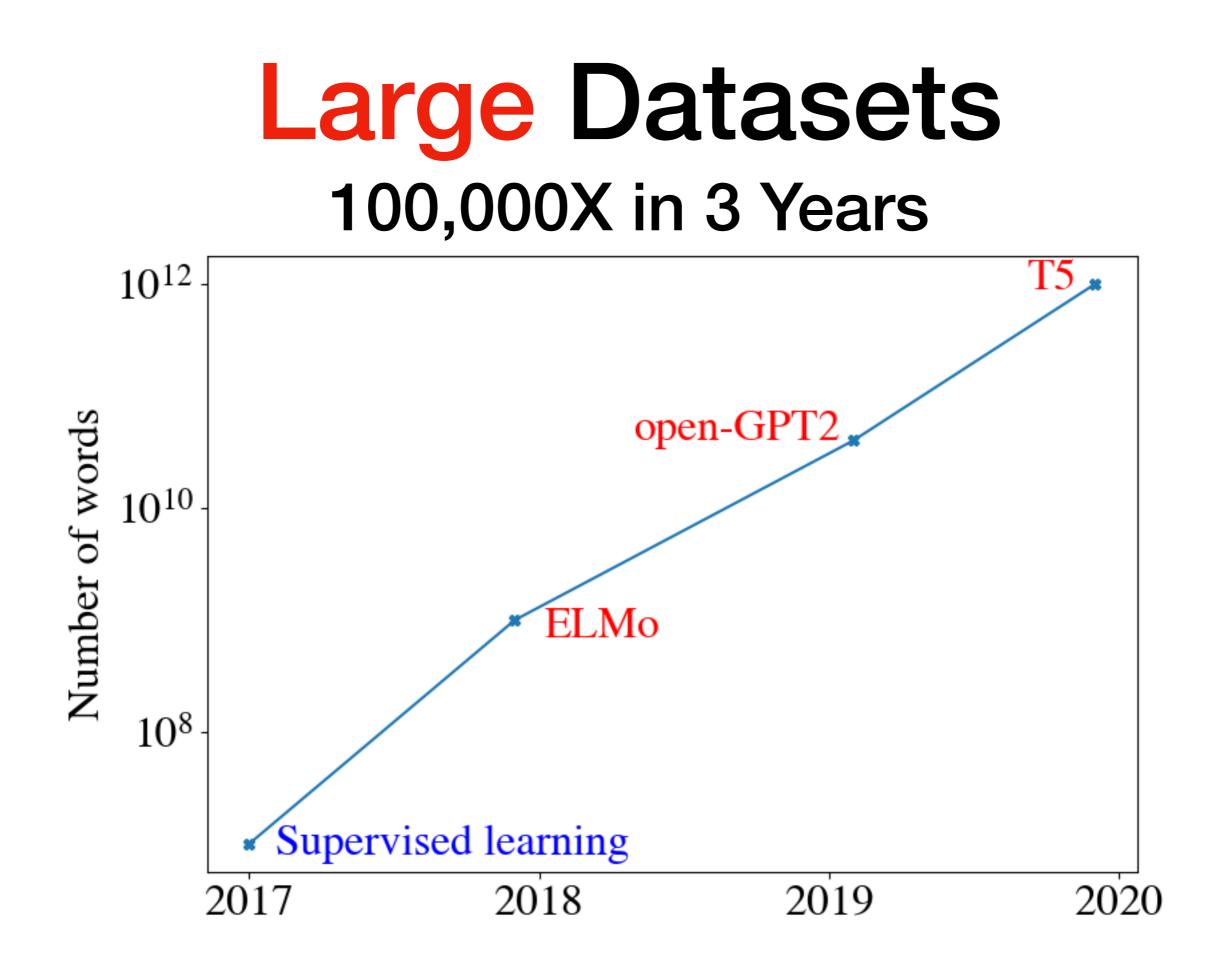






#### Premise: Big Models 10,000X in 3 Years





#### **Efficiency** Current Approaches



#### **Efficiency** Current Approaches



#### **Efficiency** Current Approaches

#### Model distillation

 Hinton et al. (2015); MobileBERT (Sun et al., 2019); DistilBERT (Sanh et al., 2019)



#### Pruning / Structural Pruning

- Han et al. (2016); SNIP (Lee et al., 2019); LTH (Frankle & Corbin, 2019); MorphNet (Gordon et al., 2018); Michel et al. (2019); LayerDrop (Fan et al., 2020); Dodge, Schwartz et al. (2019)
- Quantization
  - Gong et al. (2014); Q8BERT (Zafrir et al., 2019); Q-BERT (Shen et al., 2019)

# Data in NLP

#### **Basic Assumption: Instances are IID**



# Not all Instances are Alike

- 1. The movie was awesome.
- 2. I could definitely see why this movie received such great critiques, but at the same time I can't help but wonder whether the plot was written by a 12 year-old or by an award-winning writer.

# Not all Instances are Alike

- 1. The movie was awesome.
- 2. I could definitely see why this movie received such great critiques, but at the same time I can't help but wonder whether the plot was written by a 12 year-old or by an award-winning writer.

What is the capital of Italy?

Which country won the largest number of swimming medals in the 2016 summer olympics?

Would a glass of water that falls from 10 feet down to a trampoline break?

## Outline

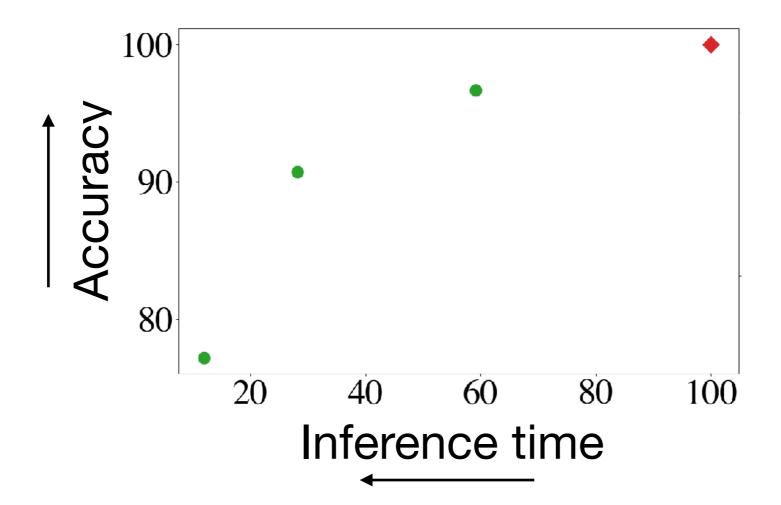
#### Not all Instances are Alike

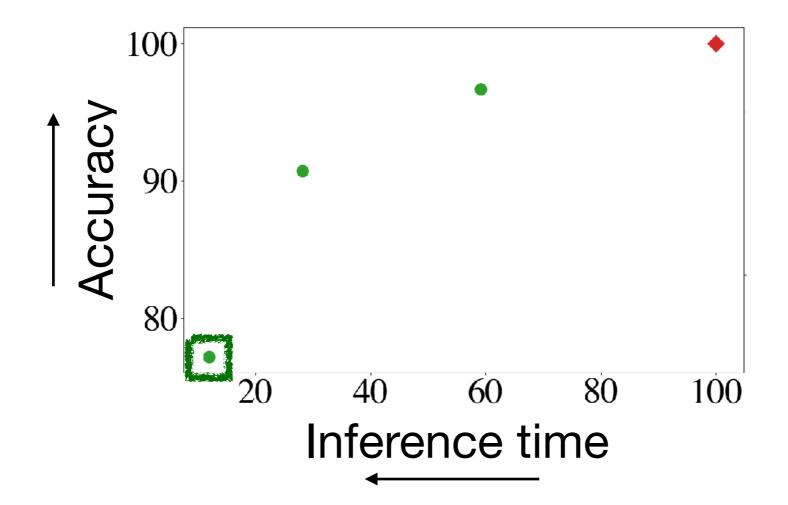
- Efficient inference
  - Schwartz et al., ACL 2020
- Efficient training
  - Swayamdipta et al., EMNLP 2020
- Better masked language modeling for vision and language
  - Bitton et al., Findings of EMNLP 2021

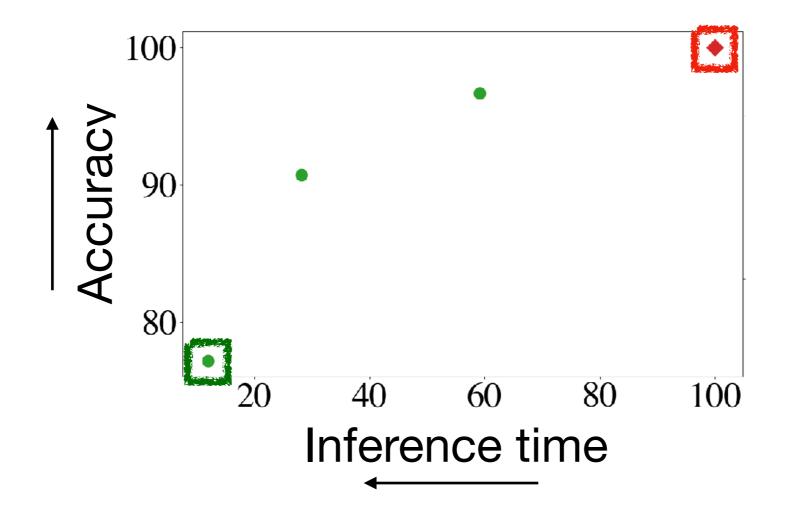
#### Case Study 1: Efficient Inference Schwartz et al., ACL 2020

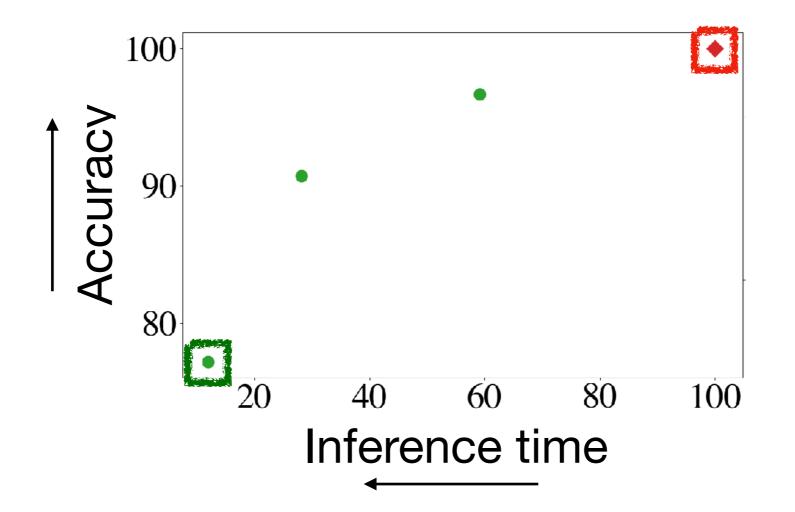
# Some instances require less processing than others



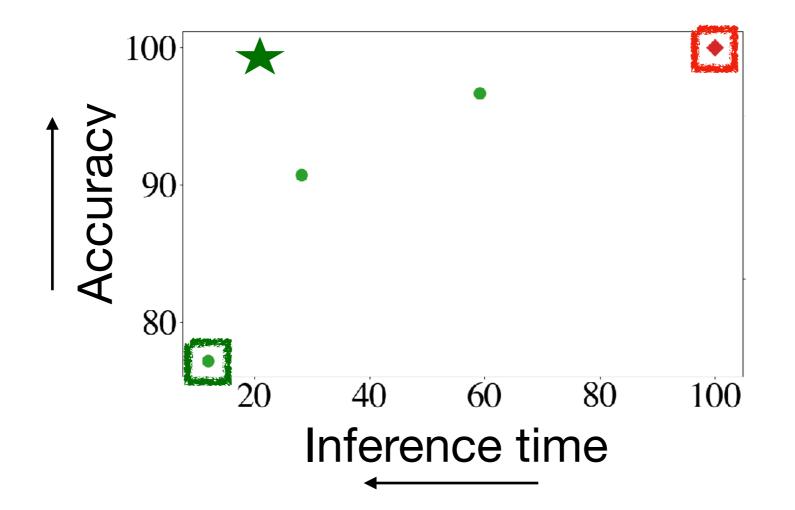






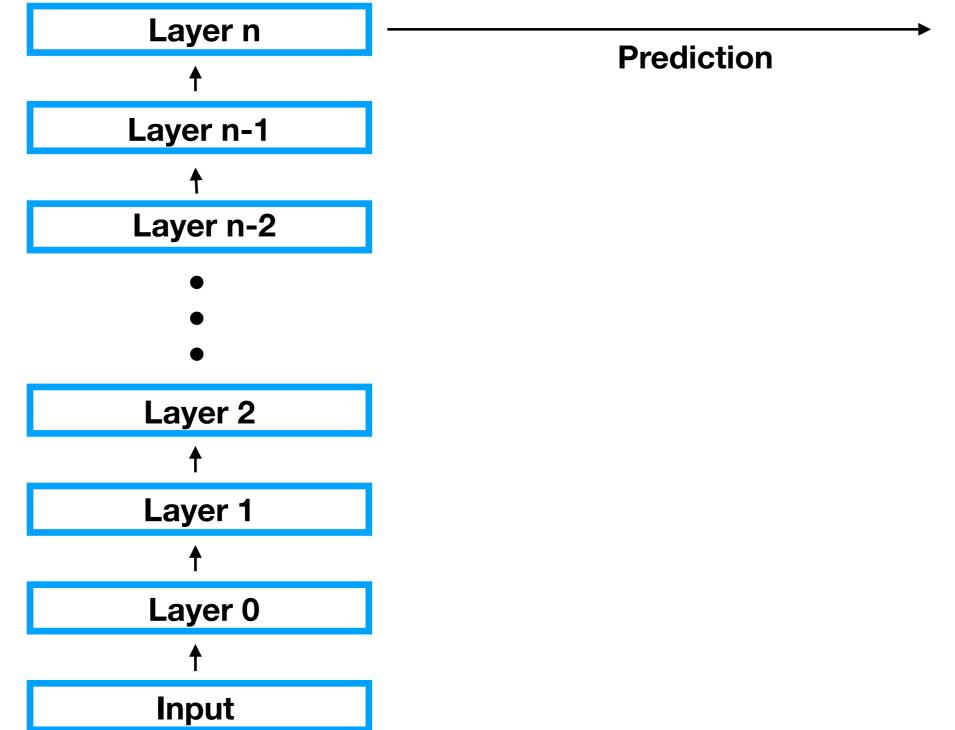


Run an efficient model on "easy" instances, and an expensive model on "hard" instances

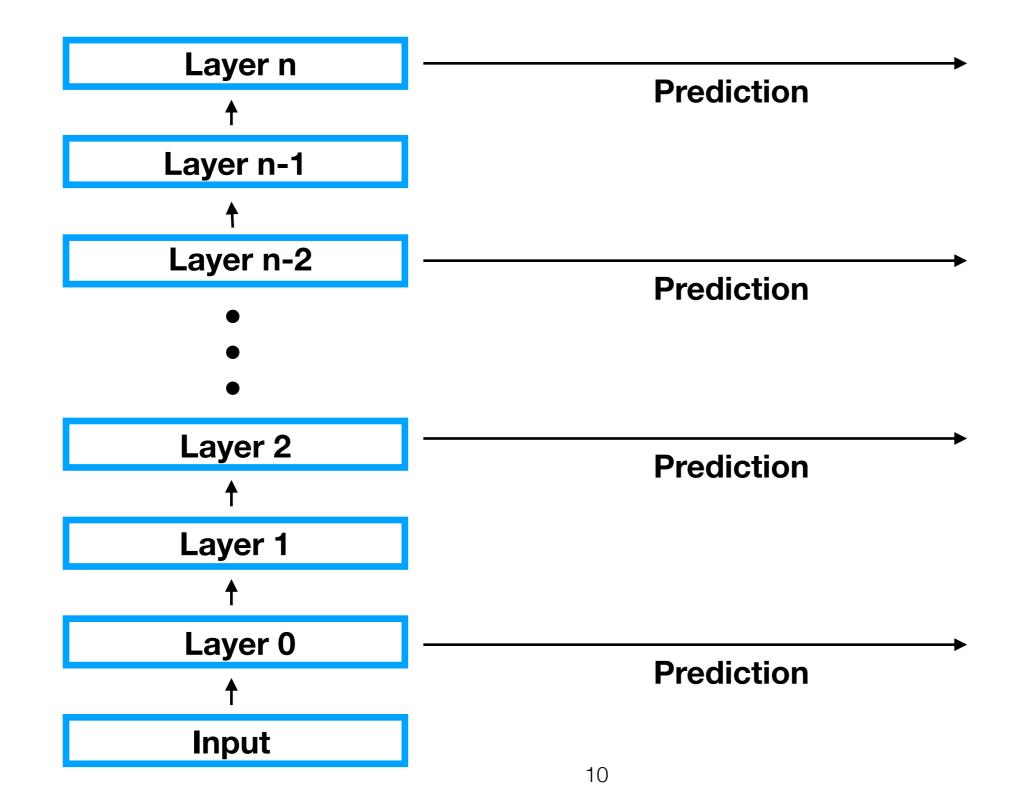


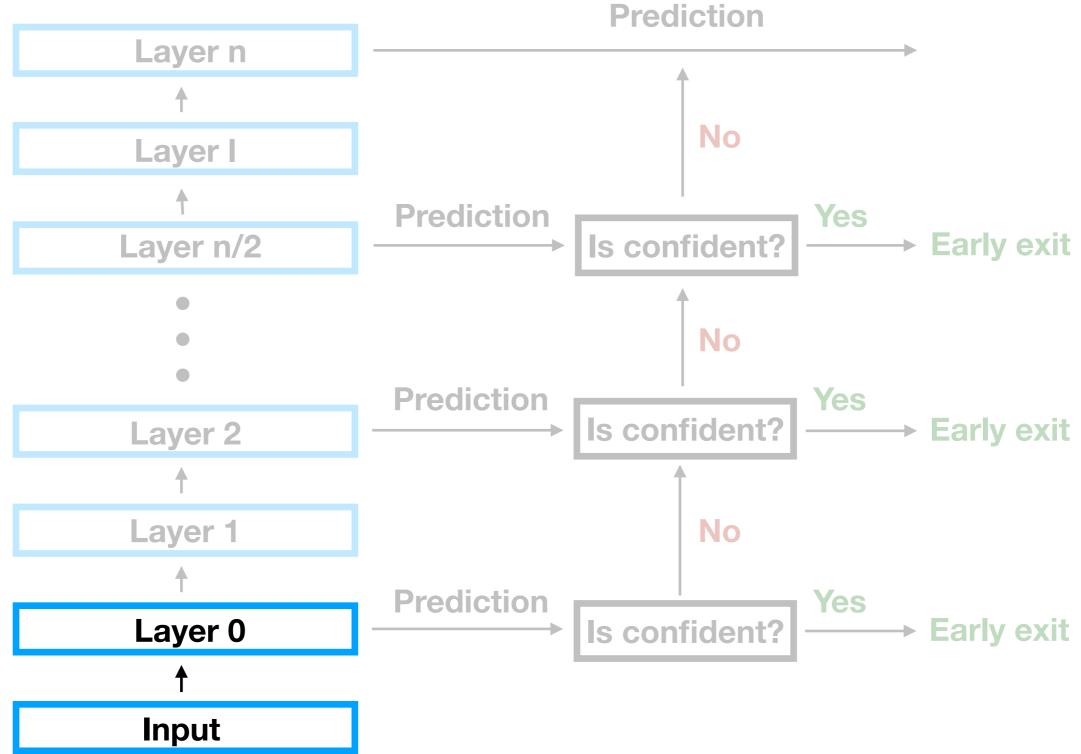
Run an efficient model on "easy" instances, and an expensive model on "hard" instances

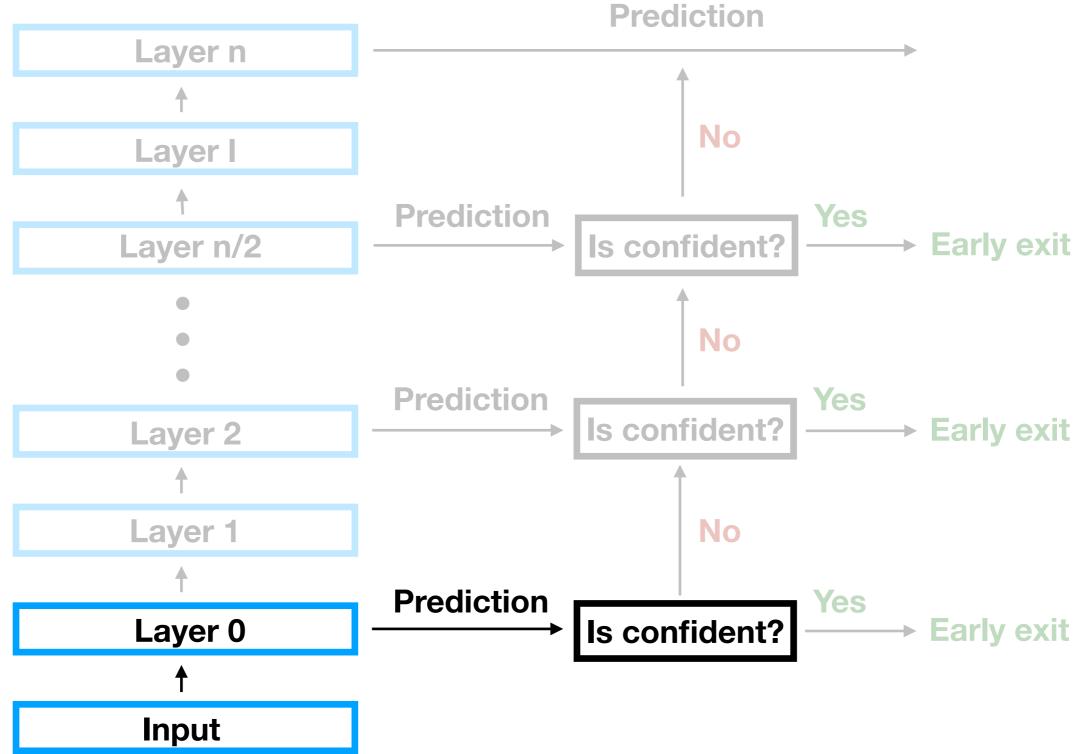
## **Our Approach: Training Time**

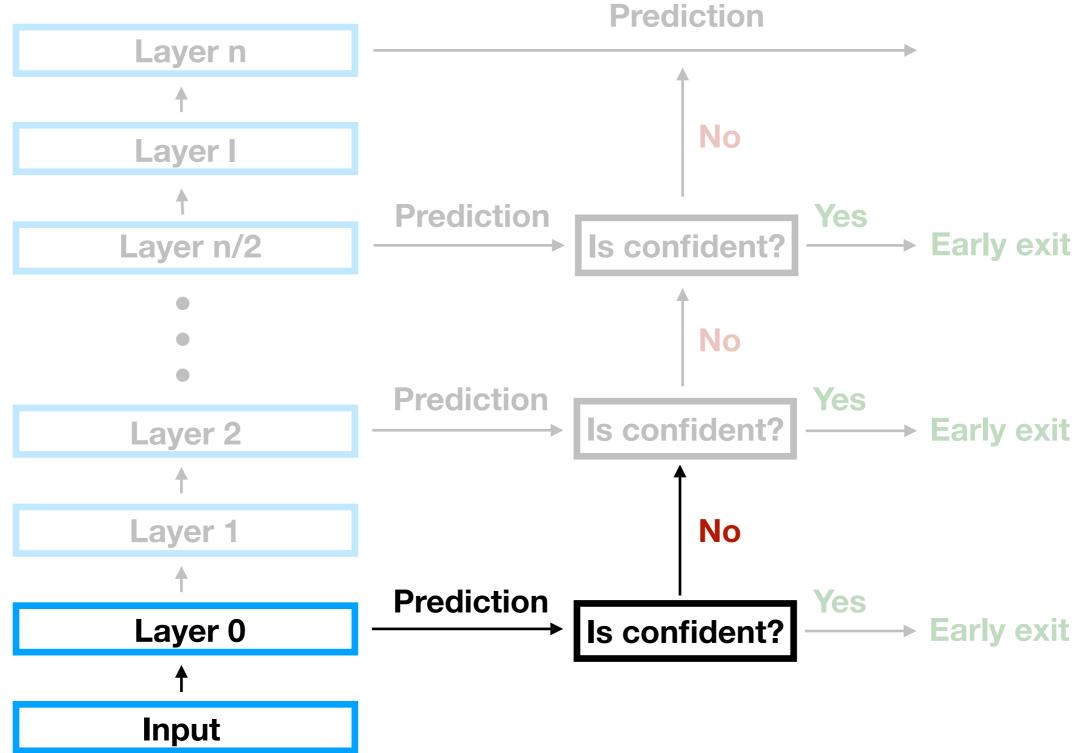


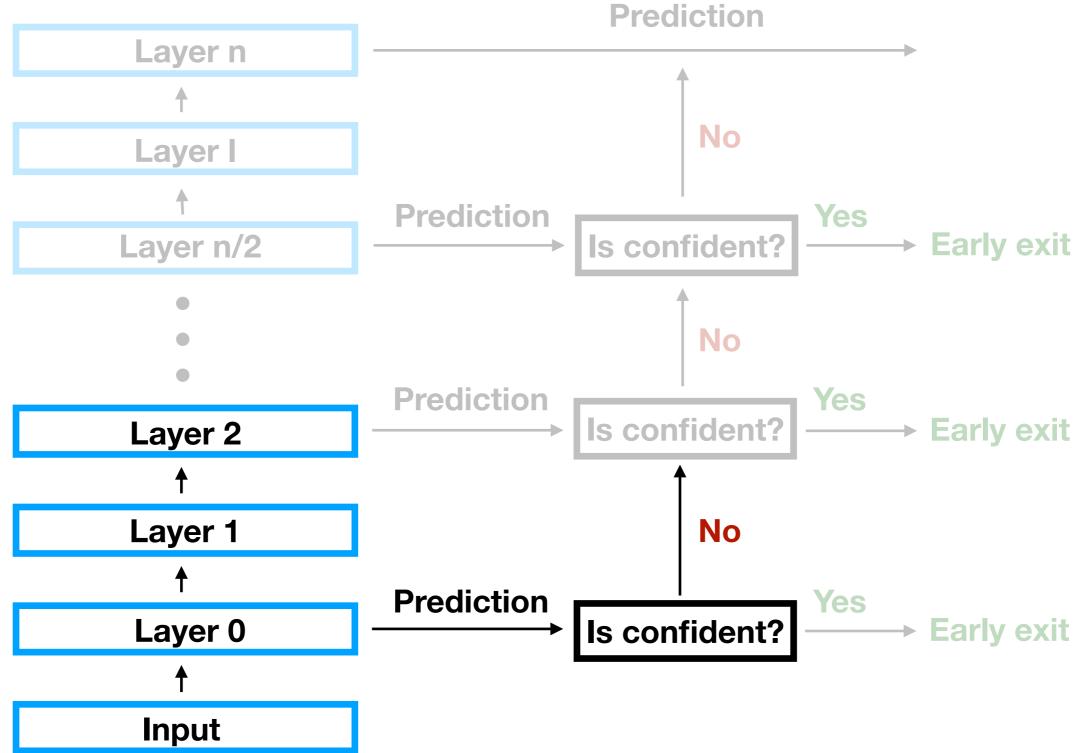
## **Our Approach: Training Time**

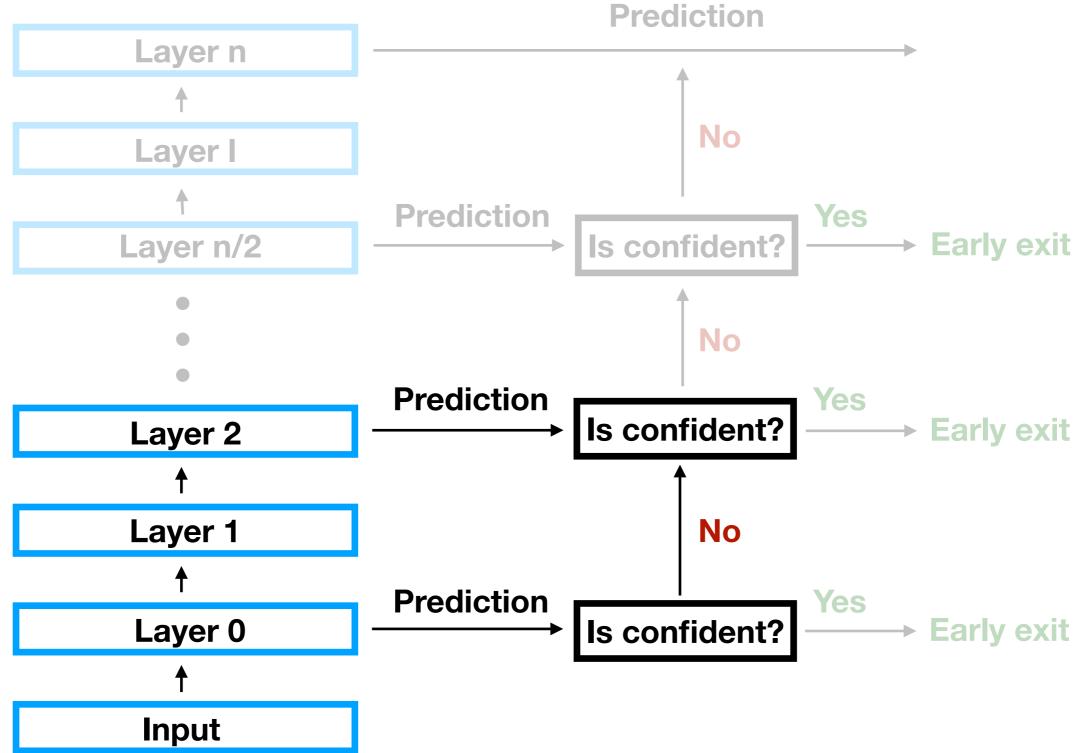


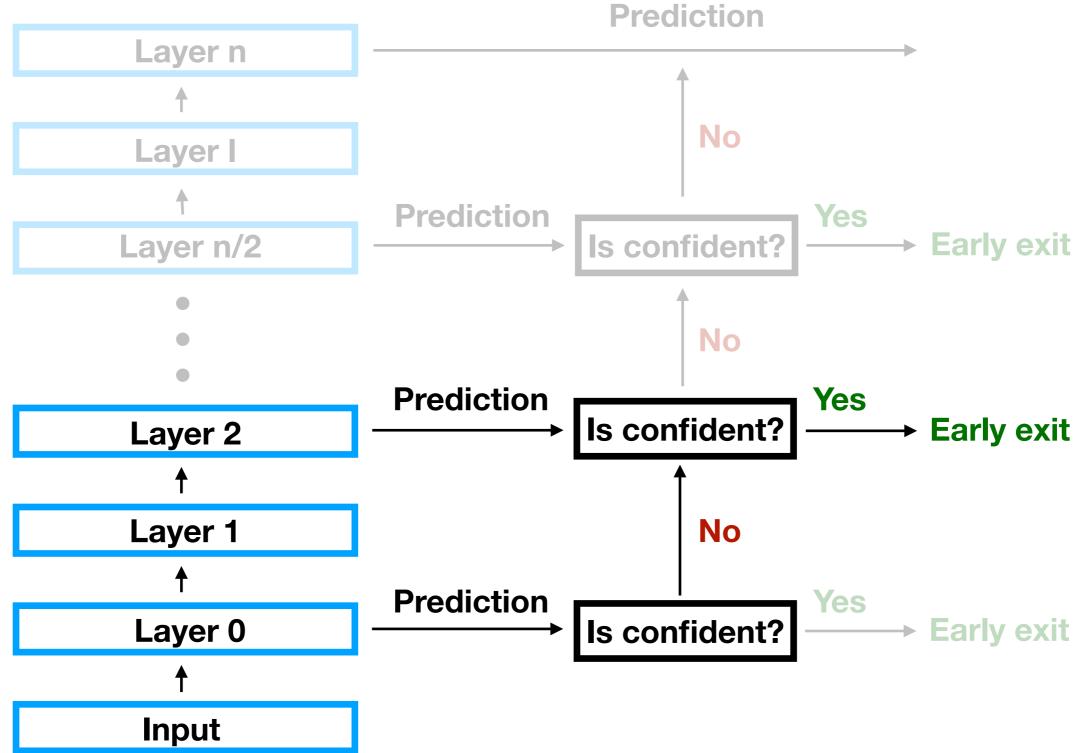












#### Calibrated Confidence Scores

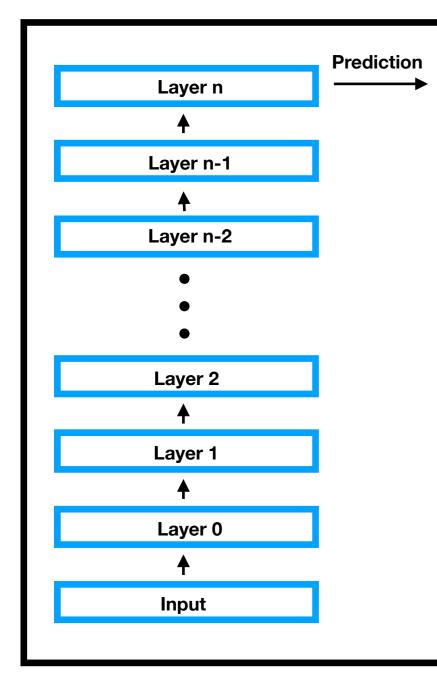
- Interpret the calibrated softmax label scores as model confidence
  - We use temperature calibration (Guo et al., 2017)

#### Calibrated Confidence Scores

- Interpret the calibrated softmax label scores as model confidence
  - We use temperature calibration (Guo et al., 2017)
- Speed/accuracy tradeoff controlled by a single earlyexit confidence threshold

#### Baselines

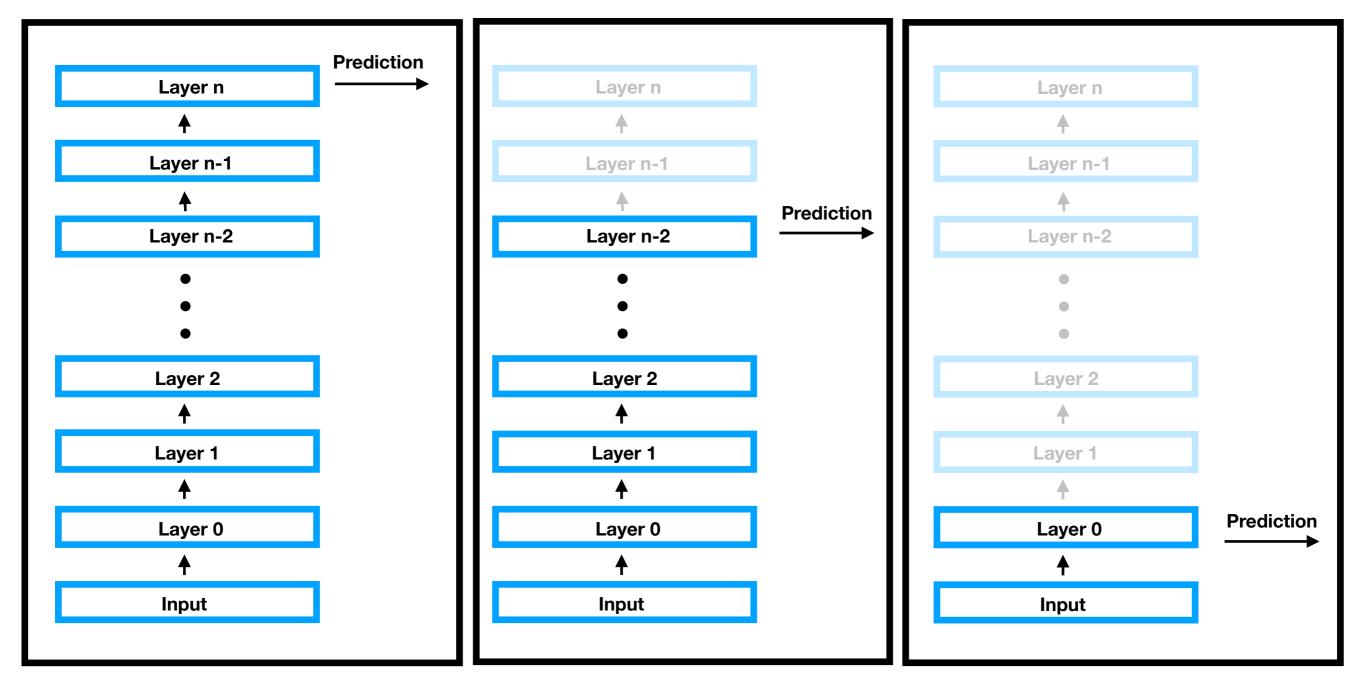
#### **Standard baseline**



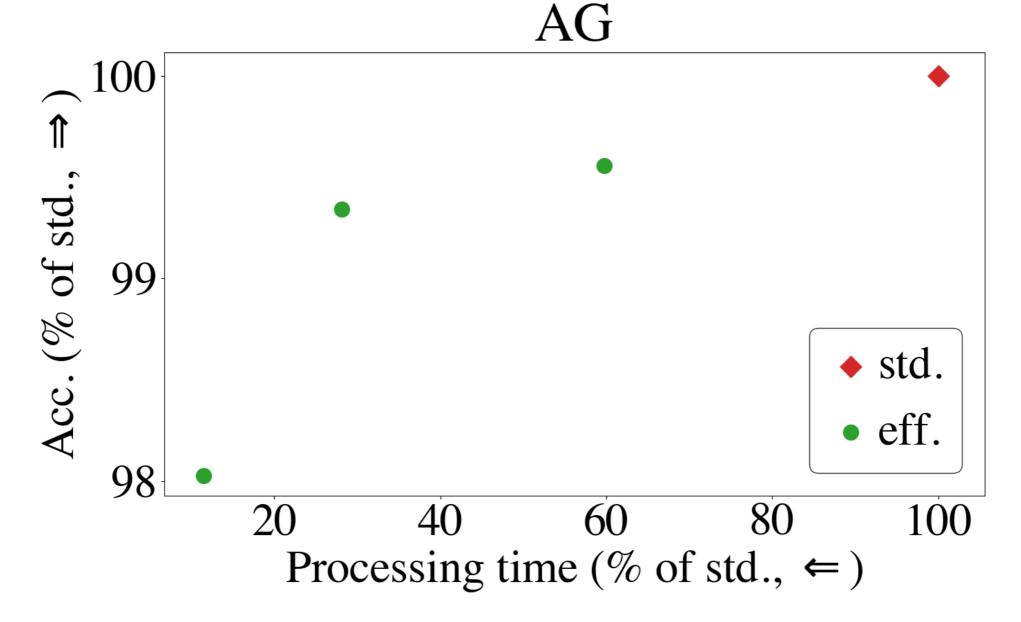
#### Baselines

#### **Standard baseline**

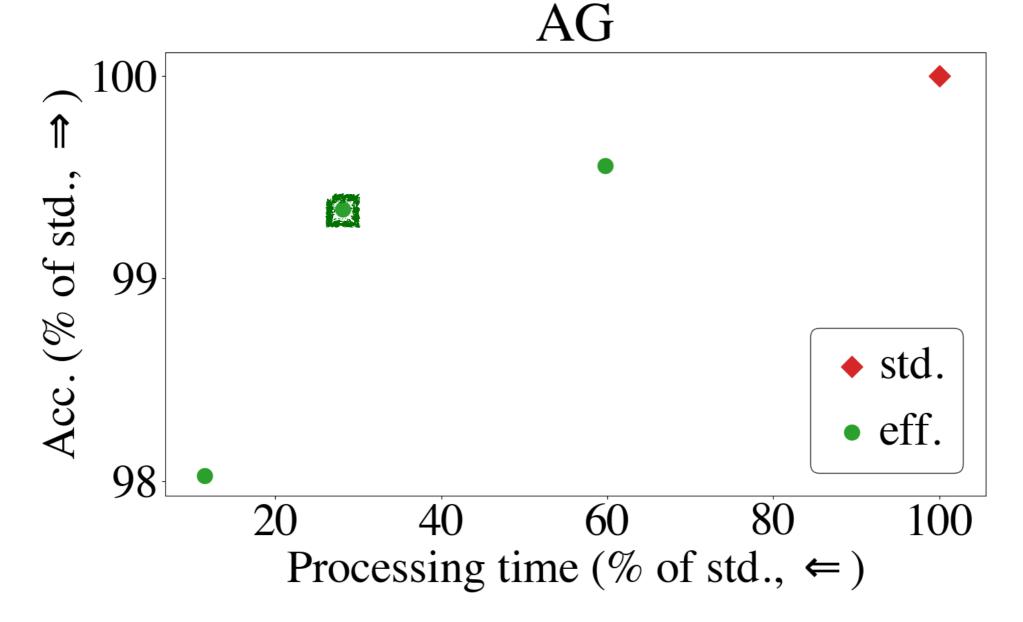
#### **Efficient baselines**



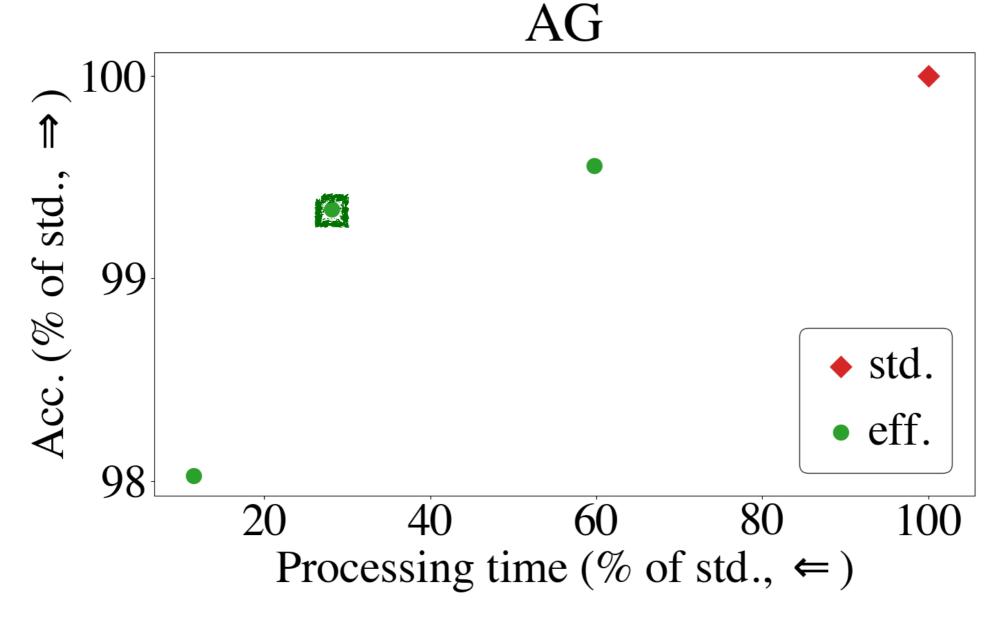
### Experimental Results: Strong Baselines!



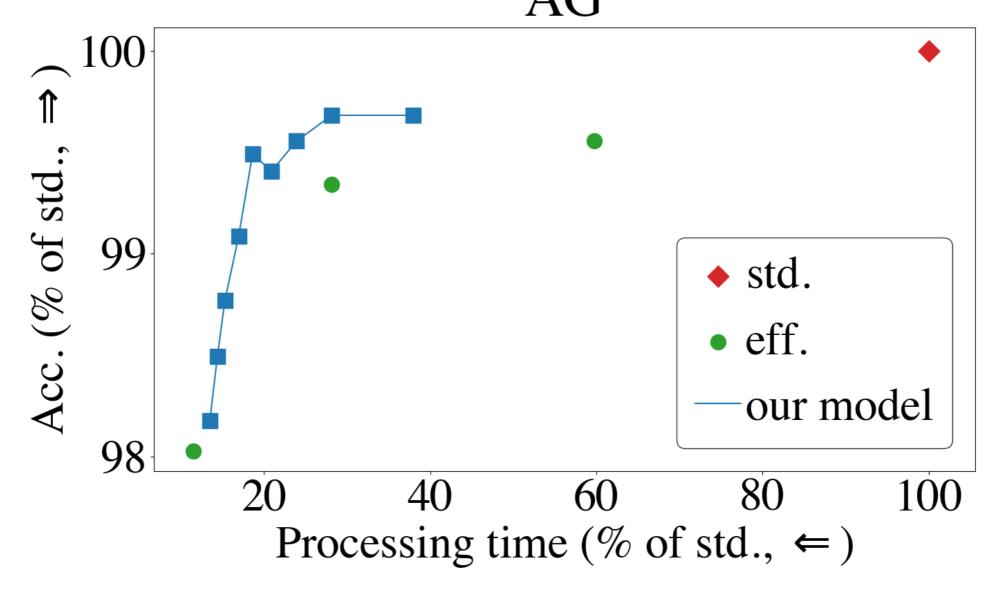
### Experimental Results: Strong Baselines!

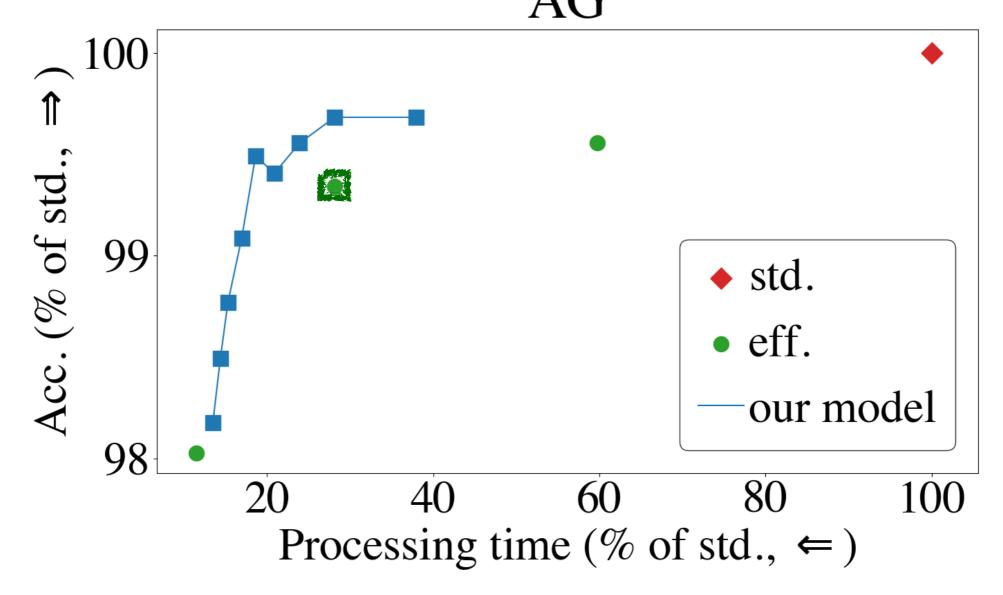


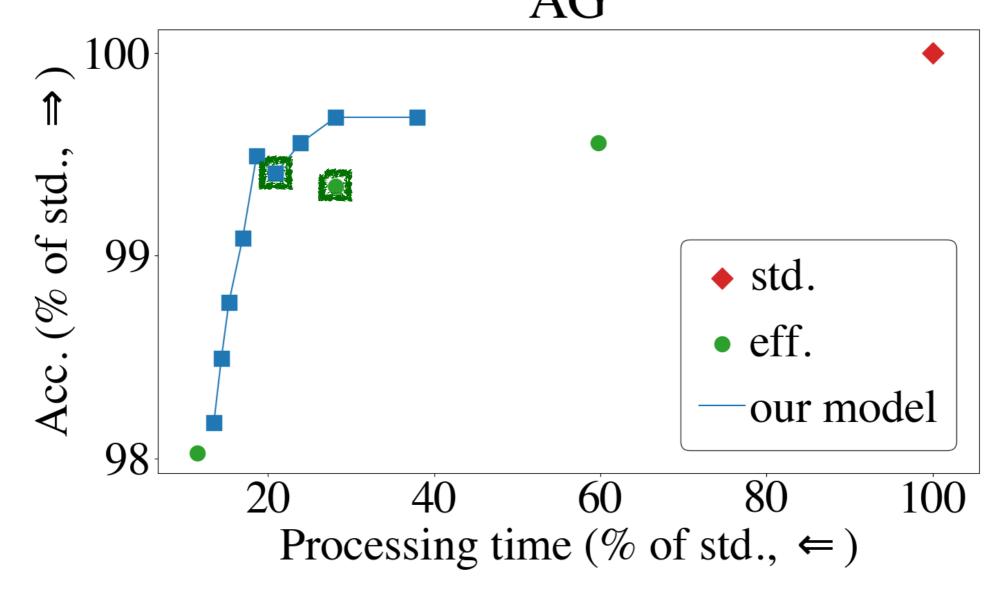
## Experimental Results: Strong Baselines!

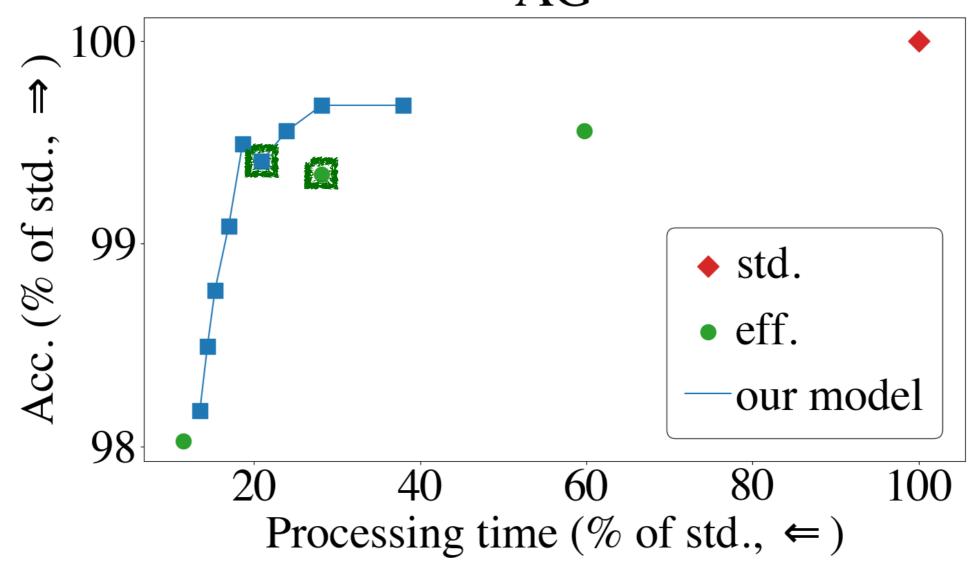


3 times faster, within 1% of full model

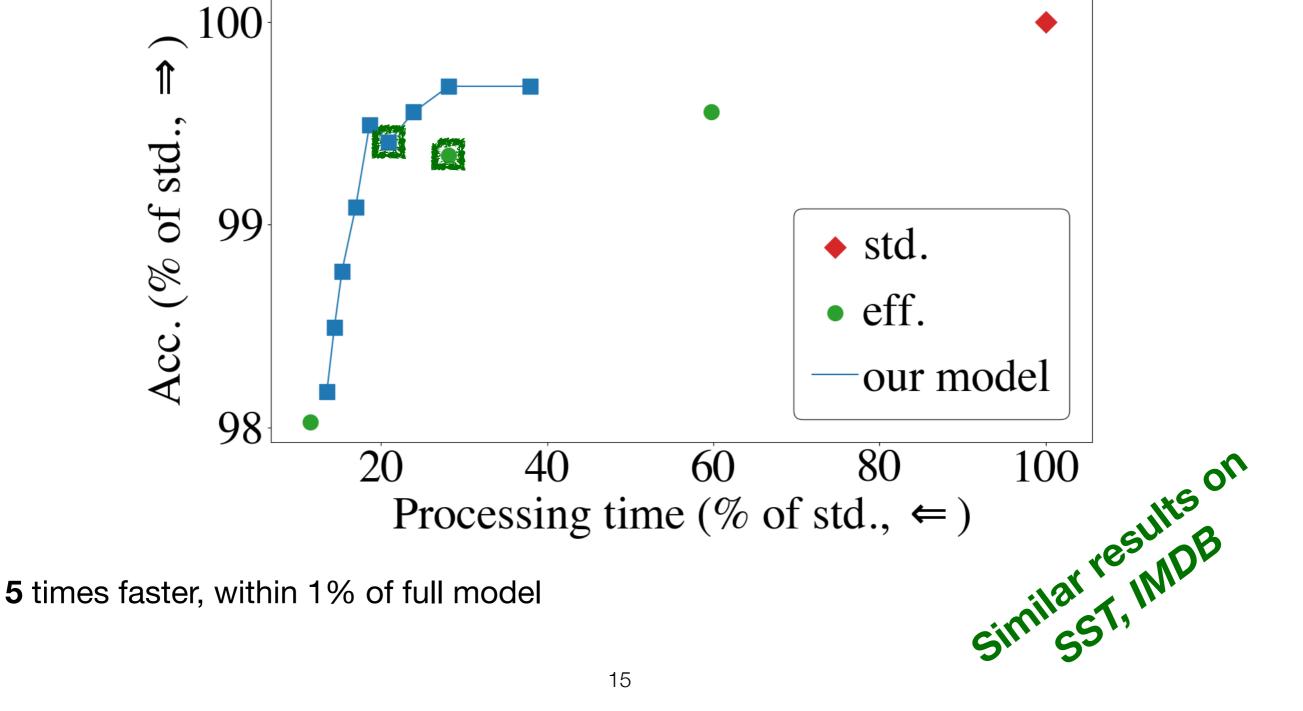








5 times faster, within 1% of full model



- No effective growth in parameters
  - < 0.005% additional parameters

- No effective growth in parameters
  - < 0.005% additional parameters
- Training is **not** slower

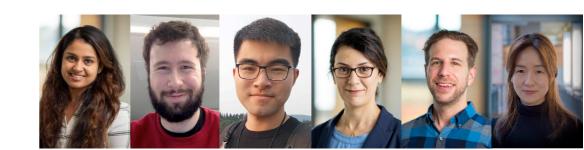
- No effective growth in parameters
  - < 0.005% additional parameters
- Training is **not** slower
- A single trained model provides multiple options along the speed/accuracy tradeoff
  - A single parameter: confidence threshold

- No effective growth in parameters
  - < 0.005% additional parameters
- Training is **not** slower
- A single trained model provides multiple options along the speed/accuracy tradeoff
  - A single parameter: confidence threshold
- Caveat: requires batch size=1 during inference

## Case Study 2: Efficient Training

Swayamdipta, Schwartz et al., EMNLP 2020

### Some instances are **more valuable** for training than others



# High-Level Idea

- Divide the instances in a dataset into different groups
- Identify the groups that are **most valuable** for learning
- Train on those groups only, leading to substantially faster training

# **Training Dynamics**

• Assume a model trained for K epochs

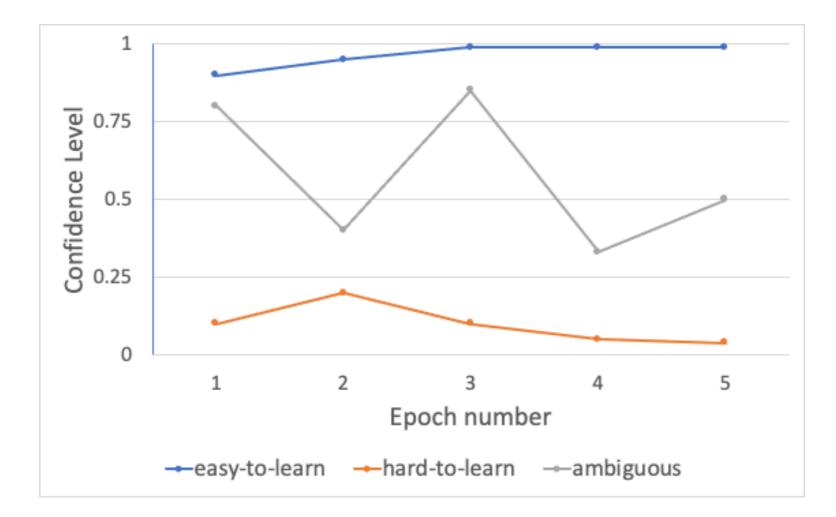
# **Training Dynamics**

- Assume a model trained for K epochs
- At each epoch, the model makes predictions on each training sample
  - This leads to a vector of size K for each training instance

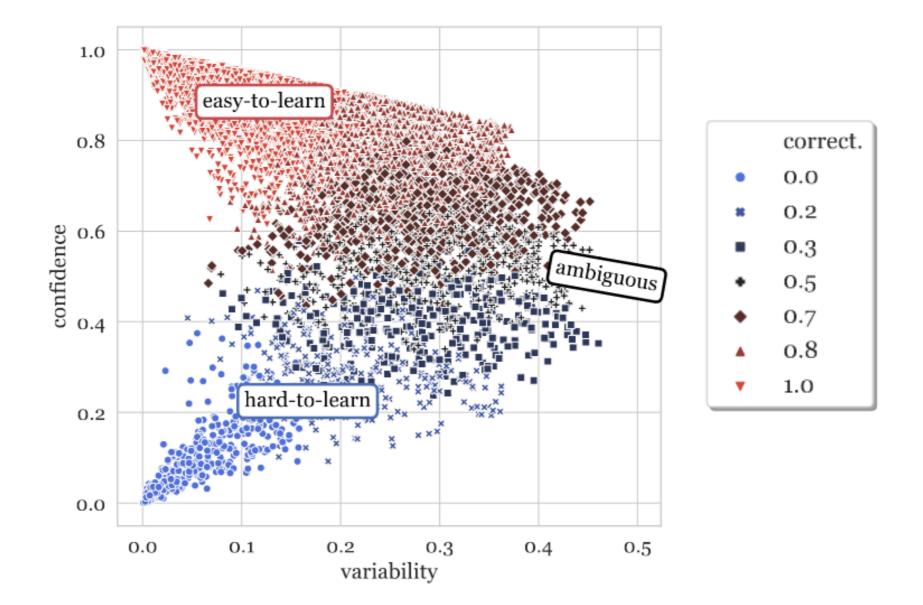
# **Training Dynamics**

- Assume a model trained for K epochs
- At each epoch, the model makes predictions on each training sample
  - This leads to a vector of size K for each training instance
- We compute two measures on each vector:
  - Mean
  - Variability

## Training Dynamics Toy Example



## Dataset Map Example SNLI, RoBERTa-Large



# Sample-Efficient Training

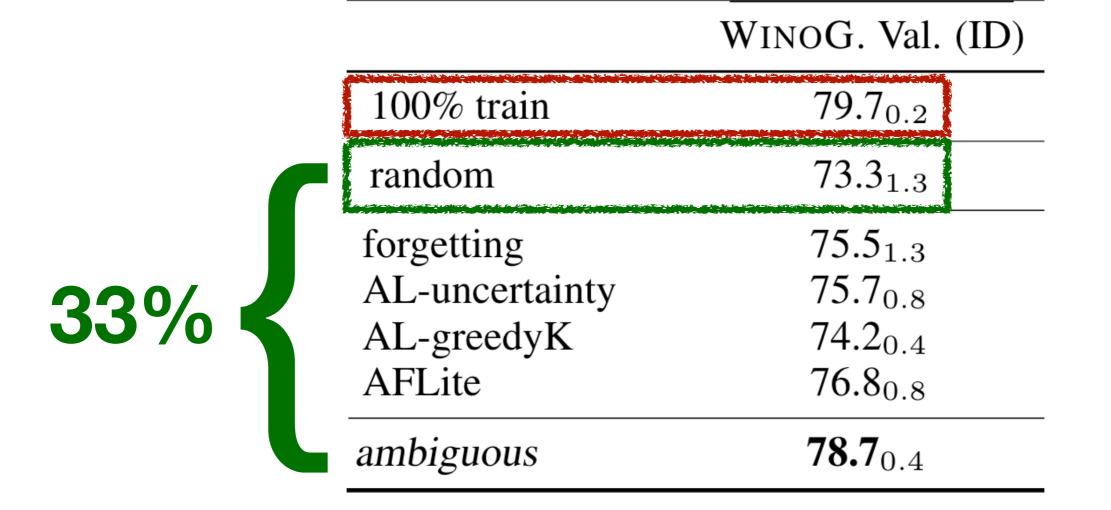
- easy-to-learn instances provide little value to training
- Can we use training dynamics to select the *most valuable* instances?

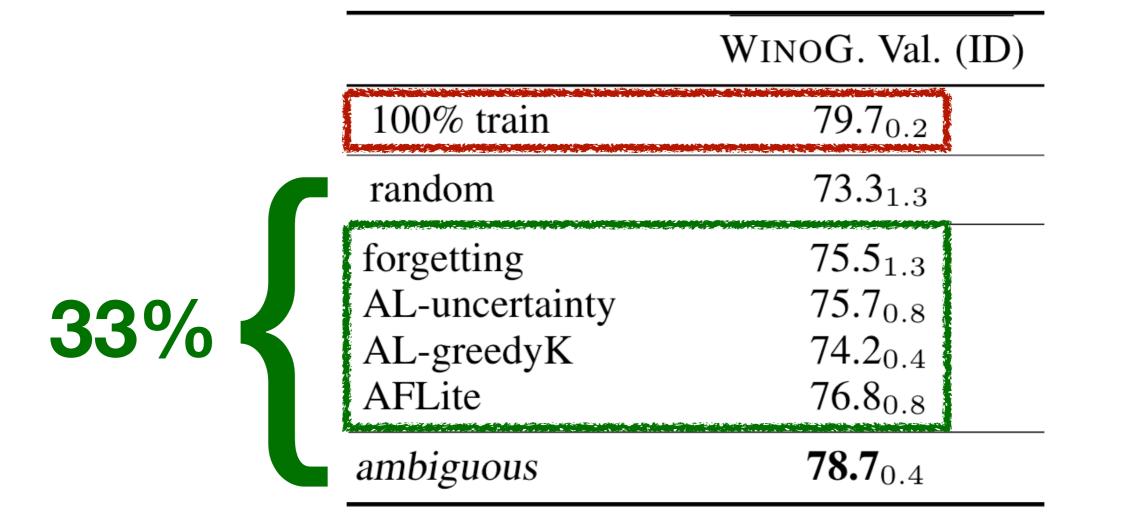
|                | WINOG. Val. (ID)           |
|----------------|----------------------------|
| 100% train     | $79.7_{0.2}$               |
| random         | $73.3_{1.3}$               |
| forgetting     | $75.5_{1.3}$               |
| AL-uncertainty | $75.7_{0.8}$               |
| AL-greedyK     | $74.2_{0.4}$               |
| AFLite         | $76.8_{0.8}$               |
| ambiguous      | <b>78.7</b> <sub>0.4</sub> |

WINOG. Val. (ID)

| 100% train     | 79.7 <sub>0.2</sub>        |
|----------------|----------------------------|
| random         | $73.3_{1.3}$               |
| forgetting     | $75.5_{1.3}$               |
| AL-uncertainty | $75.7_{0.8}$               |
| AL-greedyK     | $74.2_{0.4}$               |
| AFLite         | $76.8_{0.8}$               |
| ambiguous      | <b>78.7</b> <sub>0.4</sub> |

|     |                | WINOG. Val. (ID)           |
|-----|----------------|----------------------------|
|     | 100% train     | 79.7 <sub>0.2</sub>        |
| 33% | random         | $73.3_{1.3}$               |
|     | forgetting     | 75.51.3                    |
|     | AL-uncertainty | $75.7_{0.8}$               |
|     | AL-greedyK     | $74.2_{0.4}$               |
|     | AFLite         | $76.8_{0.8}$               |
|     | ambiguous      | <b>78.7</b> <sub>0.4</sub> |





|     |                | WINOG. Val. (ID)           |
|-----|----------------|----------------------------|
|     | 100% train     | 79.7 <sub>0.2</sub>        |
|     | random         | $73.3_{1.3}$               |
|     | forgetting     | $75.5_{1.3}$               |
| 33% | AL-uncertainty | $75.7_{0.8}$               |
|     | AL-greedyK     | $74.2_{0.4}$               |
|     | AFLite         | 76.80.8                    |
|     | ambiguous      | <b>78.7</b> <sub>0.4</sub> |

|     |                                                      | WINOG. Val. (ID)                                                                    | WSC (OOD)                                                                           |
|-----|------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
|     | 100% train                                           | 79.7 <sub>0.2</sub>                                                                 | 86.00.1                                                                             |
|     | random                                               | $73.3_{1.3}$                                                                        | 85.60.4                                                                             |
| 33% | forgetting<br>AL-uncertainty<br>AL-greedyK<br>AFLite | $\begin{array}{c} 75.5_{1.3} \\ 75.7_{0.8} \\ 74.2_{0.4} \\ 76.8_{0.8} \end{array}$ | $\begin{array}{r} 84.8_{0.7} \\ 85.7_{0.8} \\ 86.5_{0.5} \\ 86.6_{0.6} \end{array}$ |
|     | ambiguous                                            | <b>78.7</b> <sub>0.4</sub>                                                          | <b>87.6</b> 0.6                                                                     |

|     |                              | WINOG. Val. (ID)             | WSC (OOD)                    |
|-----|------------------------------|------------------------------|------------------------------|
|     | 100% train                   | 79.7 <sub>0.2</sub>          | 86.0 <sub>0.1</sub>          |
| 33% | random                       | $73.3_{1.3}$                 | 85.60.4                      |
|     | forgetting<br>AL-uncertainty | $75.5_{1.3}$<br>$75.7_{0.8}$ | $84.8_{0.7}$<br>$85.7_{0.8}$ |
|     | AL-greedyK<br>AFLite         | $74.2_{0.4} \\ 76.8_{0.8}$   | $86.5_{0.5}$<br>$86.6_{0.6}$ |
|     | ambiguous                    | <b>78.7</b> <sub>0.4</sub>   | <b>87.6</b> 0.6              |

|     |                                                      | WINOG. Val. (ID)                                                                    | WSC (OOD)                                                                           |
|-----|------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
|     | 100% train                                           | 79.7 <sub>0.2</sub>                                                                 | 86.0 <sub>0.1</sub>                                                                 |
| 33% | random                                               | 73.31.3                                                                             | 85.60.4                                                                             |
|     | forgetting<br>AL-uncertainty<br>AL-greedyK<br>AFLite | $\begin{array}{c} 75.5_{1.3} \\ 75.7_{0.8} \\ 74.2_{0.4} \\ 76.8_{0.8} \end{array}$ | $\begin{array}{r} 84.8_{0.7} \\ 85.7_{0.8} \\ 86.5_{0.5} \\ 86.6_{0.6} \end{array}$ |
|     | ambiguous                                            | <b>78.7</b> <sub>0.4</sub>                                                          | <b>87.6</b> 0.6                                                                     |

Similar results on SNLI, MNLI, QNLI

# Recap

- Some instances contribute more to learning
- We select the ones with the highest variance in confidence level across training
- 3x reduction in training time
  - Minimal reduction in ID performance
  - **Improvement** on OOD performance
- Limitations
  - Model-dependent
  - Requires training on the full dataset first

### Case Study 3: Efficient Pre-training for Vision and Language

Bitton, Stanovsky, Elhadad & Schwartz, Findings of EMNLP 2021

### Some **words** are **more valuable** for pre-training than others



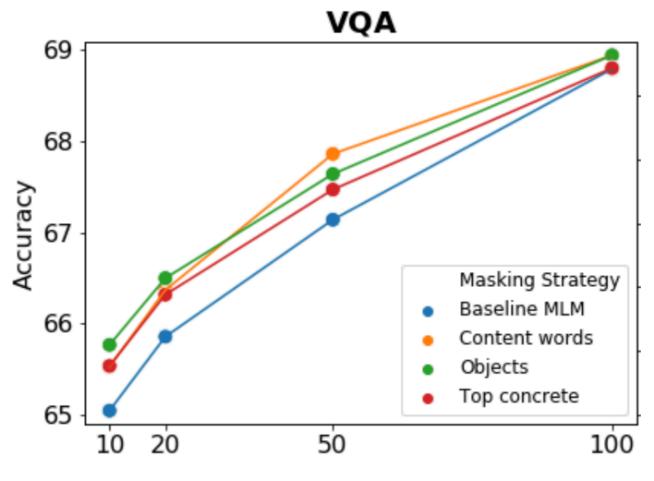
 Virtually all vision pre-training works (Shin et al., 2021) follow BERT and randomly mask 15% of the tokens

- Virtually all vision pre-training works (Shin et al., 2021) follow BERT and randomly mask 15% of the tokens
- Of the masked tokens, roughly one half are stop-words or punctuation

- Virtually all vision pre-training works (Shin et al., 2021) follow BERT and randomly mask 15% of the tokens
- Of the masked tokens, roughly one half are stop-words or punctuation
- We propose better masking strategies for V&L MLM

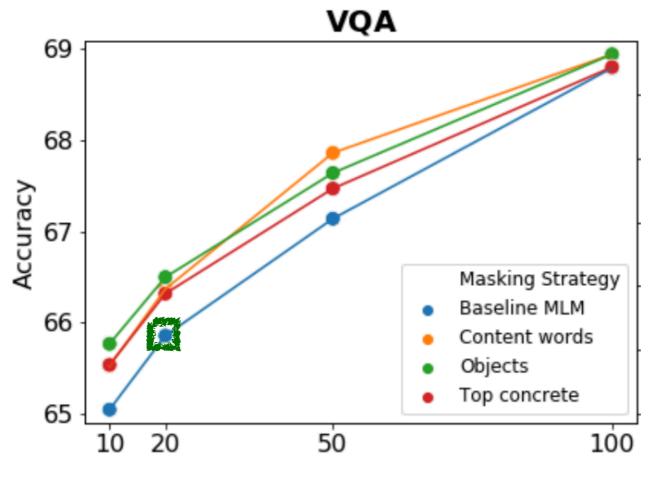
- Virtually all vision pre-training works (Shin et al., 2021) follow BERT and randomly mask 15% of the tokens
- Of the masked tokens, roughly one half are stop-words or punctuation
- We propose better masking strategies for V&L MLM
- See Yonatan's talk for more details!

#### Especially on Low-Resource Settings



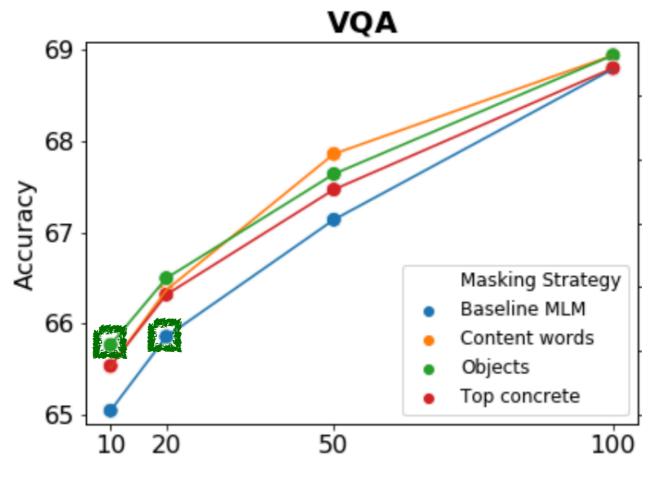
% of training data

#### Especially on Low-Resource Settings



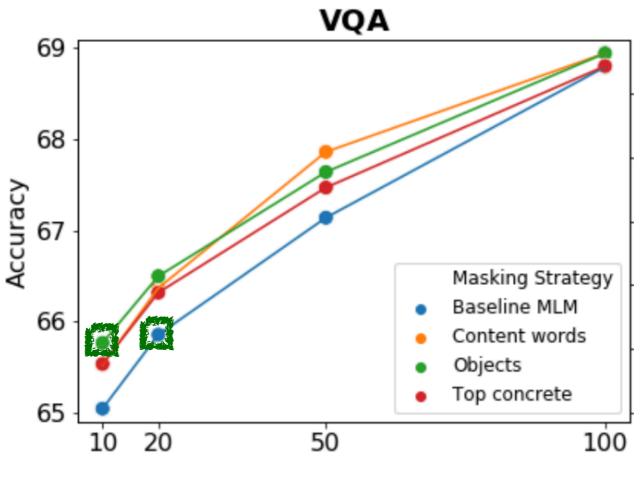
% of training data

#### Especially on Low-Resource Settings



% of training data

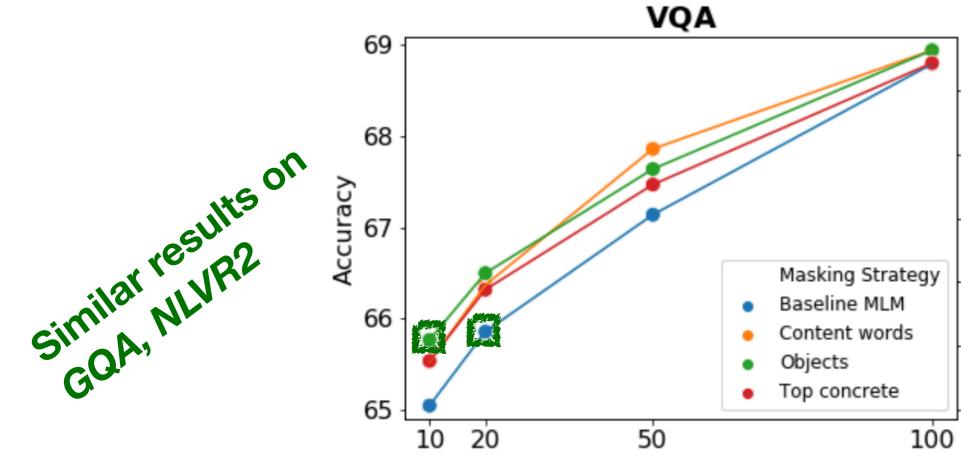
#### Especially on Low-Resource Settings



% of training data

#### Similar accuracy, twice as fast

#### Especially on Low-Resource Settings



% of training data

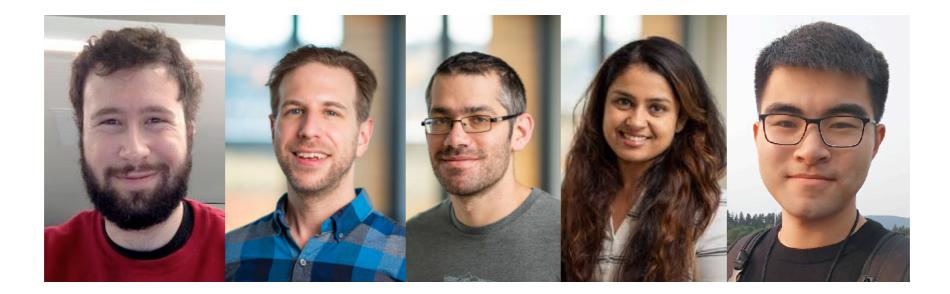
#### Similar accuracy, twice as fast

## Not all Instances are Alike Recap

- Efficient inference by selecting the right tool for the job
- Efficient fine-tuning by selecting the most ambiguous examples
- Efficient multi-modal pre-training by better masking strategies

# **Amazing Collaborators!**





## Not all instances are alike Recap

- Efficient **inference** by selecting *the right tool for the job*
- Efficient fine-tuning by selecting the most ambiguous examples
- Efficient multi-modal pre-training by better masking strategies

