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Premise: Big Models
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• Model distillation


• Hinton et al. (2015); MobileBERT (Sun et al., 2019); 
DistilBERT (Sanh et al., 2019)


• Pruning / Structural Pruning


• Han et al. (2016); SNIP (Lee et al., 2019); LTH (Frankle & 
Corbin, 2019); MorphNet (Gordon et al., 2018); Michel et 
al. (2019); LayerDrop (Fan et al., 2020); Dodge, Schwartz 
et al. (2019)


• Quantization


• Gong et al. (2014); Q8BERT (Zafrir et al., 2019); Q-BERT 
(Shen et al., 2019)

Efficiency

Current Approaches



Data in NLP

Basic Assumption: Instances are IID
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Not all Instances are Alike
1. The movie was awesome.  
2. I could definitely see why this movie received such great 

critiques, but at the same time I can’t help but wonder 
whether the plot was written by a 12 year-old or by an 
award-winning writer. 
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Outline

Not all Instances are Alike
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• Efficient inference


• Schwartz et al., ACL 2020


• Efficient training


• Swayamdipta et al., EMNLP 2020


• Better masked language modeling for vision and language


• Bitton et al., Findings of EMNLP 2021



Case Study 1: 

Efficient Inference


Schwartz et al., ACL 2020
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Some instances require less 
processing than others



High-Level Idea
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Calibrated Confidence 
Scores

• Interpret the calibrated softmax label scores as model 
confidence


• We use temperature calibration (Guo et al., 2017)        
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Calibrated Confidence 
Scores

• Interpret the calibrated softmax label scores as model 
confidence


• We use temperature calibration (Guo et al., 2017)        

• Speed/accuracy tradeoff controlled by a single early-
exit confidence threshold
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Baselines
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Baselines
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Standard baseline Efficient baselines
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Experimental Results: 
Strong Baselines!
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3 times faster, within 1% of full model 
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5 times faster, within 1% of full model 

Similar re
sults on 

SST, I
MDB



More about our Approach

• No effective growth in parameters


• < 0.005% additional parameters
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More about our Approach

• No effective growth in parameters


• < 0.005% additional parameters

• Training is not slower

• A single trained model provides multiple options along 
the speed/accuracy tradeoff


• A single parameter: confidence threshold

• Caveat: requires batch size=1 during inference
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Case Study 2: Efficient Training

Swayamdipta, Schwartz et al., EMNLP 2020
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Some instances are more 
valuable for training than 

others



High-Level Idea

18

• Divide the instances in a dataset into different groups  

• Identify the groups that are most valuable for learning 

• Train on those groups only, leading to substantially 
faster training



Training Dynamics
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• Assume a model trained for K epochs

• At each epoch, the model makes predictions on each 
training sample


• This leads to a vector of size K for each training instance

• We compute two measures on each vector:


• Mean


• Variability 



Training Dynamics

Toy Example
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Dataset Map Example

SNLI, RoBERTa-Large
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Sample-Efficient Training
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• easy-to-learn instances provide little value to training


• Can we use training dynamics to select the most 
valuable instances?



Experiments

WinoGrande, RoBERTa-Large
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Experiments

WinoGrande, RoBERTa-Large
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Similar results on 

SNLI, MNLI, QNLI

{33%



Recap
• Some instances contribute more to learning


• We select the ones with the highest variance in 
confidence level across training


• 3x  reduction in training time


• Minimal reduction in ID performance


• Improvement on OOD performance


• Limitations 

• Model-dependent


• Requires training on the full dataset first
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Case Study 3: 

Efficient Pre-training for Vision and Language


Bitton, Stanovsky, Elhadad & Schwartz, Findings of EMNLP 2021
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Some words are more 
valuable for pre-training than 

others



MLM in Vision and Language
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follow BERT and randomly mask 15% of the tokens
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MLM in Vision and Language
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• Virtually all vision pre-training works (Shin et al., 2021) 
follow BERT and randomly mask 15% of the tokens

• Of the masked tokens, roughly one half are stop-words 
or punctuation

• We propose better masking strategies for V&L MLM

• See Yonatan’s talk for more details!
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Improved Downstream Performance

Especially on Low-Resource Settings
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Similar re
sults on 

GQA, N
LVR2

Similar accuracy, twice as fast

% of training data



Not all Instances are Alike

Recap
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• Efficient inference by selecting the right tool for the job 

• Efficient fine-tuning by selecting the most ambiguous 
examples


• Efficient multi-modal pre-training by better masking 
strategies



Amazing Collaborators!
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Not all instances are alike

Recap
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• Efficient inference by selecting the right tool for the job 

• Efficient fine-tuning by selecting the most ambiguous 
examples


• Efficient multi-modal pre-training by better masking 
strategies


