On the Limitations of Dataset Balancing: The Lost Battle Against Spurious Correlations Roy Schwartz The Hebrew University of Jerusalem

TAU-NLP Seminar, 04/2022

Benchmarks in NLP

MultiNL

Natural Questions

A Benchmark for Question Answering Research.

Benchmarks in NLP The Premise

Rowan Zellers Yonatan Bisk Roy Schwartz ∇ Yejin Choi ∇ *Paul G. Allen School of Computer Science & Engineering, University of Washington [♥]Allen Institute for Artificial Intelligence {rowanz,ybisk,roysch,yejin}@cs.washington.edu https://rowanzellers.com/swag

> 2017). First, our dataset poses a new challenge of grounded commonsense inference that is easy for humans (88%) while hard for current state-ofthe-art NLI models (<60%). Second, our pro-

SWAG: A Large-Scale Adversarial Dataset for **Grounded Commonsense Inference**

Benchmarks in NLP Reality

DROP (Dua et al., 2019)

HellaSWAG (Zellers et al., 2019)

WinoGrande (Sakaguchi et al., 2020

	Baseline	Shortly after
	52%	86% (Devlin et al., 2018)
	47 F1	90 F1 (Chen et al., 2020)
	47%	93% (He et al., 2020)
20)	53% AUC	88% AUC (Raffel et al., 2020)

A (Naive?) Conclusion

about it as well as a person

January 15, 2018 | Allison Linn

Microsoft creates AI that can read a document and answer questions

More Like this

More Like this

Spurious Correlations

third, unseen factor. Wikipedia

In statistics, a spurious relationship or spurious correlation is a mathematical relationship in which two or more events or variables are associated but not causally related, due to either coincidence or the presence of a certain

Spurious Correlations and NLP Benchmarks

- from the training data
 - They use the learned correlations to excel on the test sets

Instead of **understanding** the text, machines pick up on these **correlations**

Spurious Correlations and NLP Benchmarks

- from the training data
 - They use the learned correlations to excel on the test sets ullet
- This artificially **inflate** the **state of the art**

Instead of **understanding** the text, machines pick up on these **correlations**

Spurious Correlations and NLP Benchmarks

- Instead of understanding the text, machines pick up on these correlations from the training data
 - They use the learned correlations to excel on the test sets ullet
- This artificially inflate the state of the art
- As a result, many efforts exist to **mitigate these correlations**

Outline

- Background lacksquare
 - Spurious correlations in NLP datasets
 - What makes a correlation spurious? •
 - Mitigating spurious correlations via dataset balancing
- On the limitations of dataset balancing \bullet
 - Practical and conceptual limitations
- Alternatives to dataset balancing
 - Richer context \bullet
 - Interactivity and abstention lacksquare
 - Large-scale finetuning -> zero-/few-shot learning

Outline

- Background lacksquare
 - Spurious correlations in NLP datasets
 - What makes a correlation spurious? ullet
 - Mitigating spurious correlations via dataset balancing
- On the limitations of dataset balancing
 - Practical and conceptual limitations
- Alternatives to dataset balancing
 - Richer context
 - Interactivity and abstention
 - Large-scale finetuning -> zero-/few-shot learning

Spurious Correlations in Vision and Language

- VQA dataset
 - Antol et al. (2015)
- Input: an image and a question
 - What sport is this man playing? •
 - Do you see a shadow? ullet
- Output: answer
 - Tennis, yes

Spurious Correlations in VQA

- 40% of the questions in VQA starting with "What sport is this" are answered with "tennis"
- "yes" is the answer to 87% of the questions in the VQA dataset starting with "Do you see a"
 - Zhang et al. (2016); Goyal et al. (2017)

ROC Story Cloze Task Mostafazadeh et al. (2016)

Context

Tom and Sheryl have been together for two years. One they went to a carnival together. He won her several st bears, and bought her funnel cakes. When they reache Ferris wheel, he got down on one knee.

• A story comprehension task

	Right Ending		Wrong Ending	
ne day, stuffed ned the	Tom asked Sher	yl to marry him.	He wiped mud of	ff of his boot.

ROC Story Cloze Task Mostafazadeh et al. (2016)

Context

Tom and Sheryl have been together for two years. One they went to a carnival together. He won her several st bears, and bought her funnel cakes. When they reache Ferris wheel, he got down on one knee.

- A story comprehension task
- The task: given a story prefix, distinguish between the coherent and the incoherent endings

	Right Ending		Wrong Ending	
ne day, stuffed ned the	Tom asked Sher	yl to marry him.	He wiped mud of	ff of his boot.

- Train a binary classifier on the endings only
 - Ignoring the story prefix

Right Ending Tom asked Sheryl to marry him.

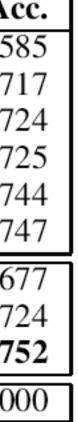
Wrong Ending He wiped mud off of his boot.

- Train a binary classifier on the endings only
 - Ignoring the story prefix

Right Ending Tom asked Sheryl to marry him.

Wrong Ending He wiped mud off of his boot.

Model	Ac
DSSM (Mostafazadeh et al., 2016a)	0.58
ukp (Bugert et al., 2017)	0.7
tbmihaylov (Mihaylov and Frank, 2017)	0.72
†EndingsOnly (Cai et al., 2017)	0.72
cogcomp	0.74
HIER, ENCPLOTEND, ATT (Cai et al., 2017)	0.74
RNN	0.6
†Ours	0.72
Combined (ours + RNN)	0.75
Human judgment	1.0



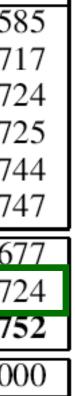
- Train a binary classifier on the endings only
 - Ignoring the story prefix

Right Ending Tom asked Shervl to marry him.

Wrong Ending He wiped mud off of his boot.

enn abhea bhei	i ji to maii j	 nipear	1144 01	 10 0	~

Model	Acc.
DSSM (Mostafazadeh et al., 2016a)	0.585
ukp (Bugert et al., 2017)	0.717
tbmihaylov (Mihaylov and Frank, 2017)	0.724
†EndingsOnly (Cai et al., 2017)	0.725
cogcomp	0.744
HIER, ENCPLOTEND, ATT (Cai et al., 2017)	0.747
RNN	0.677
†Ours	0.724
Combined (ours + RNN)	0.752
Human judgment	1.000



- Train a binary classifier on the endings only
 - Ignoring the story prefix

Right	Weight	Freq.	Wrong	Weight	Freq.
'ed .'	0.17	6.5%	START NNP	0.21	54.8%
'and '	0.15	13.6%	NN .	0.17	47.5%
JJ	0.14	45.8%	NN NN .	0.15	5.1%
to VB	0.13	20.1%	VBG	0.11	10.1%
'd th'	0.12	10.9%	START NNP VBD	0.11	41.9%

Right Ending

Wrong Ending

Tom asked Sheryl to marry him. He wiped mud off of his boot.

Model	Acc.
DSSM (Mostafazadeh et al., 2016a)	0.585
ukp (Bugert et al., 2017)	0.717
tbmihaylov (Mihaylov and Frank, 2017)	0.724
†EndingsOnly (Cai et al., 2017)	0.725
cogcomp	0.744
HIER, ENCPLOTEND, ATT (Cai et al., 2017)	0.747
RNN	0.677
†Ours	0.724
Combined (ours + RNN)	0.752
Human judgment	1.000

- Train a binary classifier on the endings only
 - Ignoring the story prefix

Right	Weight	Freq.		Wrong		Weight	Freq.
'ed .'	0.17	6.5%		start NN	ΙP	0.21	54.8%
'and '	0.15	13.6%		NN .		0.17	47.5%
JJ	0.14	45.8%		NN NN		0.15	5.1%
to VB	0.13	20.1%		VBG		0.11	10.1%
'd th'	0.12	10.9%	STA	ART NNP	VBD	0.11	41.9%

Right Ending

Wrong Ending

Tom asked Sheryl to marry him. He wiped mud off of his boot.

Model	Acc.
DSSM (Mostafazadeh et al., 2016a)	0.585
ukp (Bugert et al., 2017)	0.717
tbmihaylov (Mihaylov and Frank, 2017)	0.724
†EndingsOnly (Cai et al., 2017)	0.725
cogcomp	0.744
HIER, ENCPLOTEND, ATT (Cai et al., 2017)	0.747
RNN	0.677
†Ours	0.724
Combined (ours + RNN)	0.752
Human judgment	1.000

Premise	A woman selling bamb
Entailment	There are at least three
Neutral	A woman is selling bar
Contradiction	A woman is not taking

SNLI (Bowman et al., 2015); MNLI (Williams et al., 2018)

boo sticks talking to two men on a loading dock.

e **people** on a loading dock. amboo sticks **to help provide for her family.** g money for any of her sticks.

Spurious Correlations in NLI Datasets

Gururangan, Swaymdipta, Levy, S., Bowman, Smith (2018); Poliak et al. (2018); Tsuchiya (2018)

- Train a hypothesis-only classifier
 - No premise

Spurious Correlations in NLI Datasets

Gururangan, Swaymdipta, Levy, S., Bowman, Smith (2018); Poliak et al. (2018); Tsuchiya (2018)

- Train a hypothesis-only classifier
 - No premise

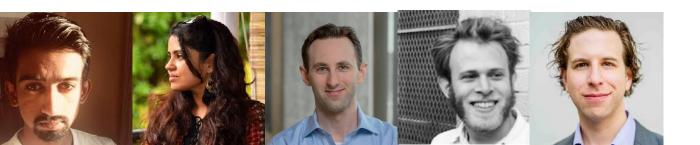
Model	SNI I	MultiNLI		
WIGUEI	SNLI	Matched	Mismatched	
majority class	34.3	35.4	35.2	
fastText	67.0	53.9	52.3	

Spurious Correlations in NLI Datasets

Gururangan, Swaymdipta, Levy, S., Bowman, Smith (2018); Poliak et al. (2018); Tsuchiya (2018)

- Train a hypothesis-only classifier
 - No premise

	Entailment		Neutral		Contradiction	
SNLI	outdoors least instrument outside animal	8.0%		0.6%	tv	0.1% 3.2% 1.2% 0.4% 1.3%
MNLI	some yes something sometimes various	0.9% 0.2%	because popular many	4.1%	nothing any	5.0% 7.6% 1.4% 4.1% 0.1%



Model	SNI I	MultiNLI		
WIGUEI	SNLI	Matched	Mismatched	
majority class	34.3	35.4	35.2	
fastText	67.0	53.9	52.3	

Other Spurious Correlations

- Other tasks
 - Question answering (Kaushik & Lipton, 2018) •
 - Winograd Schema (Elazar et al., 2021) •
- Are We Modeling the Task or the Annotator?
 - Geva et al. (2019) •

What are Spurious Correlations?

third, unseen factor. Wikipedia

 In statistics, a spurious relationship or spurious correlation is a mathematical relationship in which two or more events or variables are associated but not causally related, due to either coincidence or the presence of a certain

What are Spurious Correlations?

 In statistics, a spurious relation relationship in which two or n not causally related, due to eit third, unseen factor. Wikipedia correlation is a mathematical **iriables** are **associated** but or the presence of a **certain**

What are Spurious Correlations? *Ingenuine* correlations

- A feature correlated with some output label for no apparent reason • E.g., "cat" and "sleeping" are correlated with contradictions in SNLI (Gururangan et al.,
- 2018)
 - Wang and Culotta, 2020; Rogers, 2021 \bullet

What are Spurious Correlations? *Ingenuine* correlations

- A feature correlated with some output label for no apparent reason • E.g., "cat" and "sleeping" are correlated with contradictions in SNLI (Gururangan et al.,
- 2018)
 - Wang and Culotta, 2020; Rogers, 2021 \bullet
- An appealing definition

What are Spurious Correlations? *Ingenuine* correlations

- A feature correlated with some output label for no apparent reason
 - 2018)
 - Wang and Culotta, 2020; Rogers, 2021 lacksquare
- An appealing definition
- But somewhat subjective
 - sentiment

• E.g., "cat" and "sleeping" are correlated with contradictions in SNLI (Gururangan et al.,

• E.g., the word "not" indicating NLI contradictions; "amazing" as a feature for positive

What are Spurious Correlations? **Ungeneralizable** correlations

- - Chang et al., 2021; Yaghoobzadeh et al., 2021

A feature that works well for specific examples but does not hold in general

What are Spurious Correlations? **Ungeneralizable** correlations

- A feature that works well for specific examples but **does not hold in general** Chang et al., 2021; Yaghoobzadeh et al., 2021 •
- Does not address the nature of the feature
 - Whether genuine or not lacksquare

What are Spurious Correlations? **Ungeneralizable** correlations

- A feature that works well for specific examples but does not hold in general Chang et al., 2021; Yaghoobzadeh et al., 2021 •
- Does not address the nature of the feature
 - Whether genuine or not lacksquare
- But does assume the feature is *important*
 - And thus somewhat subjective

What are Spurious Correlations? every-word

- spurious
 - Gardner et al., 2021 lacksquare

• Every simple correlation between single word features and output labels is

What are Spurious Correlations? every-word

- spurious
 - Gardner et al., 2021 lacksquare
- the class label

•
$$\forall x_i, y \in Y, p(y \mid x_i) = \frac{1}{\mid Y \mid}$$

Every simple correlation between single word features and output labels is

• Competent datasets: the marginal probability for every feature is uniform over

Mitigating Spurious Correlations

- Change the model
 - Cadene et al., 2019)
 - Model ensembles (Clark et al., 2019,2020; He et al., 2019; Bahng et al., 2020) lacksquare

• Adversarial networks (Belinkov et al., 2019; Grand and Belinkov, 2019; Wang et al., 2019;

Mitigating Spurious Correlations

- Change the model
 - Cadene et al., 2019)
 - Model ensembles (Clark et al., 2019,2020; He et al., 2019; Bahng et al., 2020) lacksquare
- Change the data
 - **Data balancing** lacksquare

• Adversarial networks (Belinkov et al., 2019; Grand and Belinkov, 2019; Wang et al., 2019;

Mitigating Spurious Correlations via Dataset Balancing Augmentation

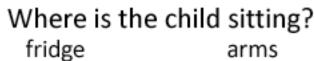
- The key idea: balance-out spurious correlations
- Vision and Language datasets
 - VQA 2.0 (Goyal et al. ,2017)
 - GQA (Hudson and Manning, 2019) ullet
- Language only
 - ROC stories cloze task 1.5 (Sharma et al., 2018)

Mitigating Spurious Correlations via Dataset Balancing Augmentation

- The key idea: balance-out spurious correlations
- Vision and Language datasets
 - VQA 2.0 (Goyal et al. ,2017)
 - GQA (Hudson and Manning, 2019) \bullet
- Language only
 - ROC stories cloze task 1.5 (Sharma et al., 2018) lacksquare

Who is wearing glasses? man woman

Is the umbrella upside down?

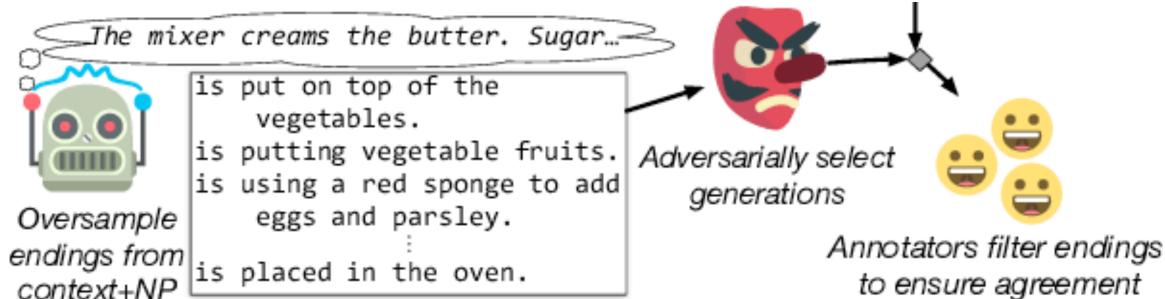


arms

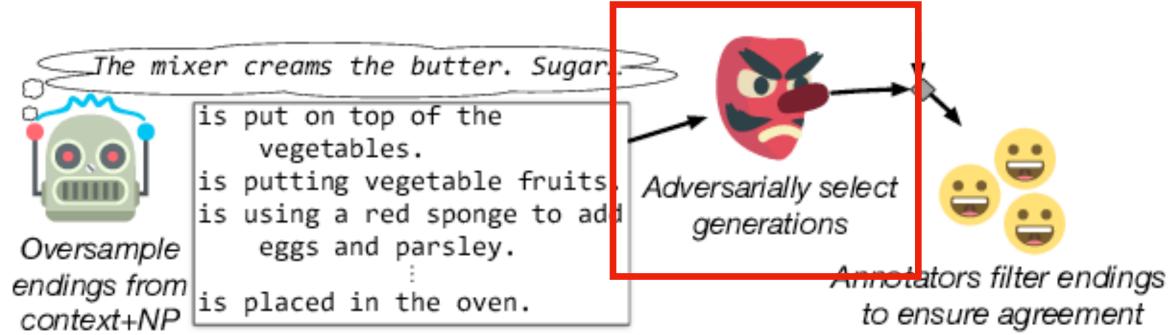
How many children are in the bed?

- Adversarial filtering
 - Zellers, Bisk, S., Choi (2018)

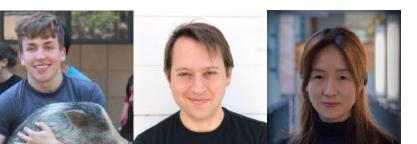
- Adversarial filtering
 - Zellers, Bisk, S., Choi (2018)

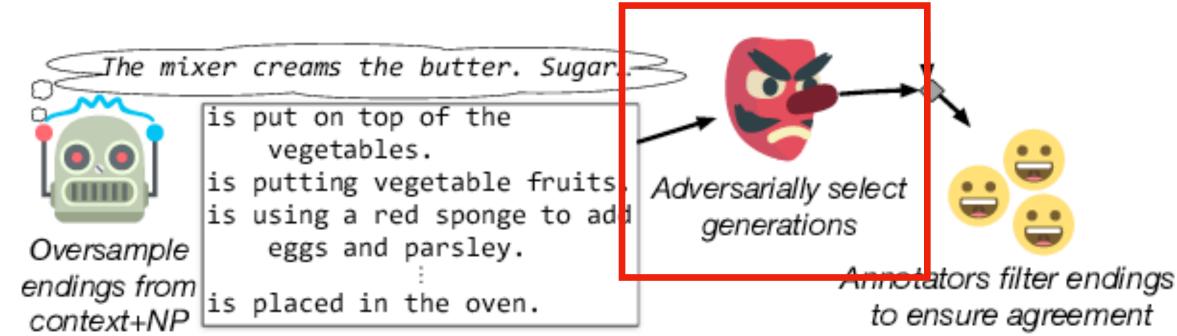


- Adversarial filtering
 - Zellers, Bisk, S., Choi (2018)



- Adversarial filtering
 - Zellers, Bisk, S., Choi (2018)
- Designed to "systematically discover and filter any dataset artifact in crowd-sourced commonsense problems" (Le Bras et al., 2020)





Filtering as Balancing

- As the adversarial model grows, models will pick up subtler correlations
 - Resulting in a fully *balanced* dataset

Filtering as Balancing

- As the adversarial model grows, models will pick up subtler correlations
 - Resulting in a fully *balanced* dataset
- Widely adopted

. . .

- Record (Zhang et al., 2018)
- DROP (Dua et al., 2019) lacksquare
- HellaSWAG (Zellers et al., 2019)
- αNLI (Bhagavatula et al., 2019) •
- WinoGrande (Sakaguchi et al., 2020)

Outline

- Background lacksquare
 - Spurious correlations in NLP datasets
 - What makes a correlation spurious? •
 - Mitigating spurious correlations via dataset balancing
- On the limitations of dataset balancing \bullet
 - Practical and conceptual limitations
- Alternatives to dataset balancing
 - Richer context \bullet
 - Interactivity and abstention lacksquare
 - Large-scale finetuning -> zero-/few-shot learning

Outline

- Background
 - Spurious correlations in NLP datasets
 - What makes a correlation spurious?
 - Mitigating spurious correlations via dataset balancing
- On the limitations of dataset balancing •
 - Practical and conceptual limitations
- Alternatives to dataset balancing
 - Richer context
 - Interactivity and abstention
 - Large-scale finetuning -> zero-/few-shot learning

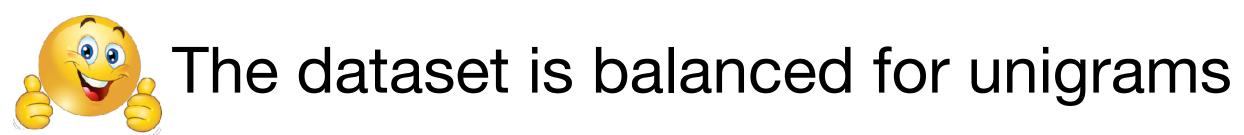
On the Limitations of Dataset Balancing: The Lost Battle Against Spurious Correlations

Roy Schwartz Gabriel Stanovsky School of Computer Science, The Hebrew University of Jerusalem {roy.schwartz1,gabriel.stanovsky}@mail.huji.ac.il

Balancing too Little is Insufficient Toy Example

Text	Label
very good very bad	+ _
not bad	+
not very good good	— +
	very good very bad not good not bad not very good

Balancing too Little is Insufficient Toy Example



Split	Text	Label
Train	very good very bad not good not bad	+ - + +
Test	not very good good	— +

Balancing too Little is InsufficientToy Example

The dataset is balanced for unigram



- But still contains spurious bigrams
- E.g., "very good", as "not very good" yie negative sentiment

Split	Text	Label
Train	very good very bad not good not bad	+ - + +
Test	not very good good	— +
	Train	Train very good very bad not good not bad

Balancing too Little is Insufficient Natural Language

• The same example can apply with larger *n*'s

Balancing too Little is Insufficient Natural Language

- The same example can apply with larger *n*'s
- More broadly, any phrase or feature combination can alter its meaning in some context
 - Negation, sarcasm, humor, ...

Balancing too Little is Insufficient Natural Language

- The same example can apply with larger *n*'s
- More broadly, any phrase or feature combination can alter its meaning in some context
 - Negation, sarcasm, humor, ...
- As a result, balancing too little is insufficient for mitigating all spurious correlations

Too much Balancing Leaves Nothing Toy Example

Original Input	Train Set Label
0 0	0
01	1
10	1
11	0

Too much Balancing Leaves Nothing Toy Example

Original Input	Train Set Label
0 0	0
01	1
10	1
11	0

Too much Balancing Leaves Nothing Toy Example

The dataset is also balanced for unigrams

But if we balance it for bigrams, we are left with no learnable signal

Original Input	Train Set	Augmen Input	ted Samples Label
0 0	0	*0 0	1
01	1	*01	0
10	1	*10	0
11	0	*11	1

Too much Balancing Leaves Nothing More Broadly

• Consider an NLP dataset D with maximal length n

Too much Balancing Leaves Nothing More Broadly

- Consider an NLP dataset D with maximal length n
- no learnable signal in D

• By definition, balancing any combination of up to *n* features (including) leaves

Too much Balancing Leaves Nothing More Broadly

- Consider an NLP dataset D with maximal length n
- By definition, balancing any combination of up to n features (including) leaves no learnable signal in D
- Conclusion: balancing too much is not helpful either

Does a *sweet-spot* exist between balancing too little and too much?

- uncertainty
 - As these would evidently cause it to make mistakes on some inputs

Dataset balancing prevents models from having a fallback option in cases of

- Dataset balancing prevents models from having a fallback option in cases of uncertainty
 - As these would evidently cause it to make mistakes on some inputs
- But fallback meanings are crucial for language understanding, as contexts are often underspecified
 - Graesser, 2013 lacksquare

- Especially relevant for world knowle common-sense knowledge
 - Joe Biden is the president of the US •
 - A person is typically happy when they receive a present

edge	and
------	-----

Who is the president of the U.S.?

Context	Answer
Ø	Joe Biden
The year 2019	Donald Trump
The West Wing, season 1	Josiah "Jed" Bartlet

- Especially relevant for world knowle common-sense knowledge
 - Joe Biden is the president of the US
 - A person is typically happy when they receive a present
- As a result, dataset balancing is undesired

edge	and
------	-----

Who is the president of the U.S.?

Context	Answer
Ø	Joe Biden
The year 2019	Donald Trump
The West Wing, season 1	Josiah "Jed" Bartlet

Is dataset balancing the right way forward?

Outline

- Background lacksquare
 - Spurious correlations in NLP datasets
 - What makes a correlation spurious? •
 - Mitigating spurious correlations via dataset balancing
- On the limitations of dataset balancing \bullet
 - Practical and conceptual limitations
- Alternatives to dataset balancing
 - Richer context \bullet
 - Interactivity and abstention lacksquare
 - Large-scale finetuning -> zero-/few-shot learning

Outline

- Background
 - Spurious correlations in NLP datasets
 - What makes a correlation spurious?
 - Mitigating spurious correlations via dataset balancing
- On the limitations of dataset balancing
 - Practical and conceptual limitations
- Alternatives to dataset balancing
 - Richer context lacksquare
 - Interactivity and abstention \bullet
 - Large-scale finetuning -> zero-/few-shot learning

38

Augmenting Datasets with Rich Contexts Current practice: Dataset Balancing

and modeling richer contexts

• Instead of *unlearning* certain information, we should be focusing on learning

Augmenting Datasets with Rich Contexts Current practice: Dataset Balancing

- and modeling richer contexts
- Example: negation
 - amazing" means
 - lacksquare

Instead of unlearning certain information, we should be focusing on learning

Instead of *unlearning* what "amazing" means, we should focus on learning what "not

Negation still poses a challenge for modern NLP models (Hossain et al., 2020,2022)

Augmenting Datasets with Rich Contexts More Details

- Other examples
 - Sarcasm (Davidov et al., 2010; Oprea and Magdy, 2020)
 - Humor (Weller and Seppi, 2019; Annamoradnejad and Zoghi, 2020)
 - Metaphors (Tsvetkov et al., 2014; Mohammad et al., 2016)
 - More generally: broad coverage semantics (e.g., CCG, UCCA, AMR)

Augmenting Datasets with Rich Contexts More Details

- Other examples
 - Sarcasm (Davidov et al., 2010; Oprea and Magdy, 2020)
 - Humor (Weller and Seppi, 2019; Annamoradnejad and Zoghi, 2020)
 - Metaphors (Tsvetkov et al., 2014; Mohammad et al., 2016)
 - More generally: broad coverage semantics (e.g., CCG, UCCA, AMR)
- Concrete suggestions: adding documents with such contexts throughout the (pre)training corpus
 - Or alternatively, as a continued pretraining step to existing pretrained models

Abstention/Interaction Motivation

To my great surprise, the movie turned out different than what I thought.

Abstention/Interaction Motivation

Abstention/Interaction Current practice: *a closed labeled set*

Sentiment Analysis

Sentiment Analysis is the task of interpreting and classifying emotions (positive or negative) in the input text.

Model

RoBERTa large

This model is trained on RoBERTa large with the binary classification setting of the Stanford Sentiment Treebank. It achieves 95.11% accuracy on the test set.

Demo Model Card Model Usage

Example Inputs

Select a Sentence

Sentence

To my great surprise, the movie turned out different than what I thought.

 \sim

 \sim

Abstention/Interaction Current practice: *a closed labeled set*

Sentiment Analysis

Sentiment Analysis is the task of interpreting and classifying emotions (positive or negative) in the input text.

Model

RoBERTa large

This model is trained on RoBERTa large with the binary classification setting of the Stanford Sentiment Treebank. It achieves 95.11% accuracy on the test set.

Demo Model Card Model Usage

Example Inputs

Select a Sentence

Sentence

To my great surprise, the movie turned out different than what I thought.

Run Model

Model Output

The model is very confident that the sentence has a positive sentiment.

 \vee

 \sim

Share

Abstention/Interaction Current practice: *a closed labeled set*

Sentiment Analysis

Sentiment Analysis is the task of interpreting and classifying emotions (positive or negative) in the input text.

Model	
RoBERTa large	
This model is trained on RoBERTa large with the	Model Interpre
Demo Model Card Model Usage	∨ Simple Gradient
Example Inputs Select a Sentence	See saliency map in
Sentence	Interpret Predictio
To my great surprise, the movie turned out diffe	SENTENCE
Model Output	<s> To Ġmy <mark>Ġgreat</mark></s>
The model is very confident that the sentence ha	Visualizing the top

etations What is this?

t Visualization

nterpretations generated by visualizing the gradient.

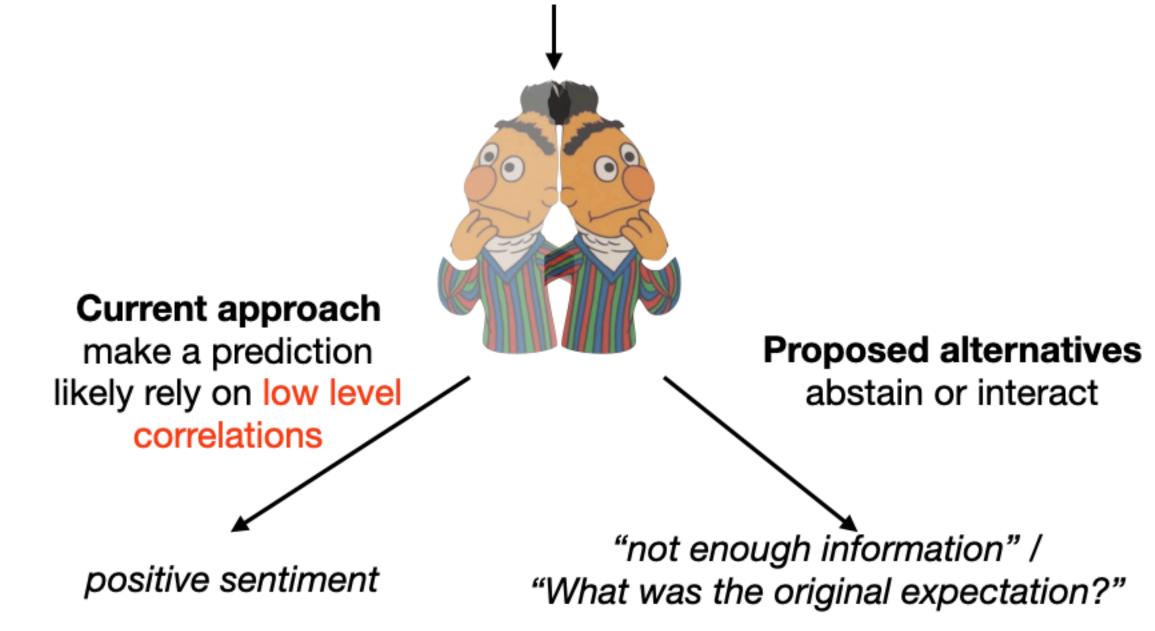
on

at Ġsurprise , Ġthe Ġmovie Ġturned Ġout Ġdifferent <mark>Ġthan</mark> Ġwhat ĠI Ġthought <mark>.</mark> </s>

3 most important words.

Abstention/Interaction Proposal

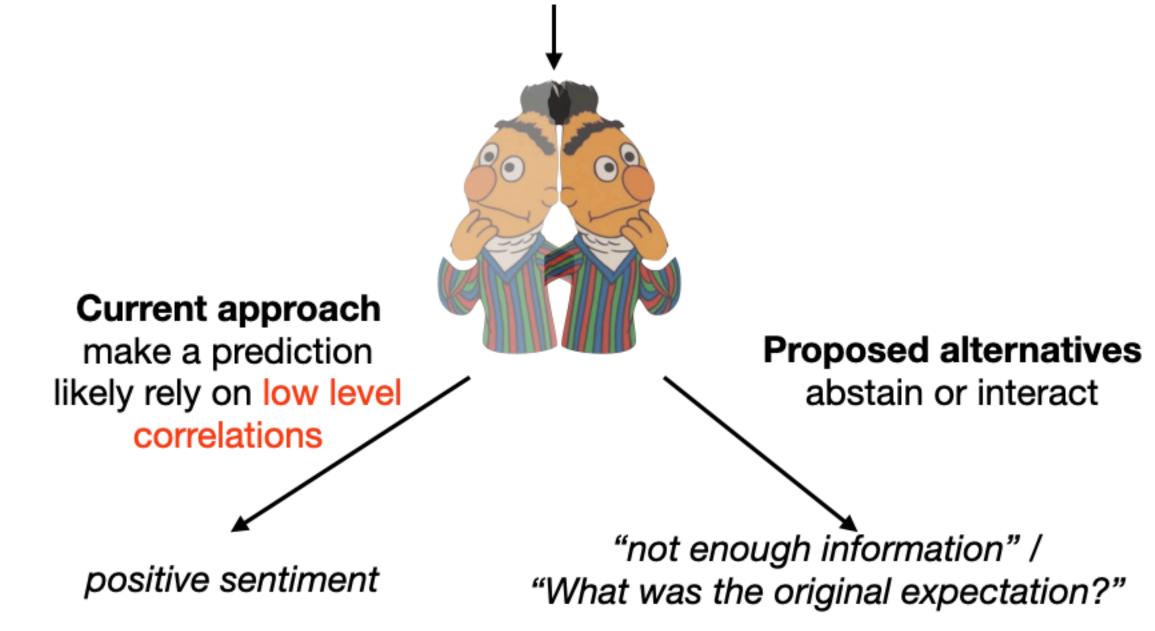
To my great surprise, the movie turned out different than what I thought



Abstention/Interaction Proposal

- Abstain / interact when models cannot make a confident decision
 - Chow, 1957; Hellman, 1970; Laidlaw and 525 Feizi, 2019; Balcan et al., 2020

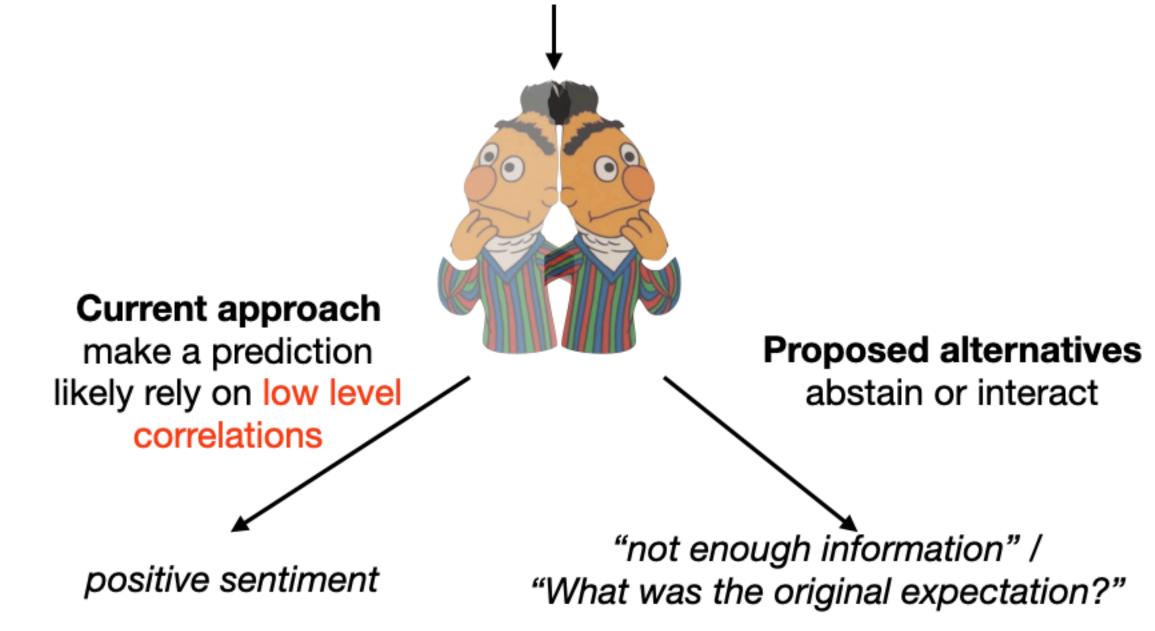
To my great surprise, the movie turned out different than what I thought



Abstention/Interaction Proposal

- Abstain / interact when models cannot make a confident decision
 - Chow, 1957; Hellman, 1970; Laidlaw and 525 Feizi, 2019; Balcan et al., 2020
- One example: datasets with unanswerable questions
 - Ray et al., 2016; Rajpurkar et al., 2018; Sulem et al., 2021

To my great surprise, the movie turned out different than what I thought



Few-shot Learning Current Practice: Large-scale Fine-tuning

- Zero- and few-shot learning has improved dramatically
 - Sometimes reaching human-level performance (Schick and Schütze, 2021; Shin et al., 2020; Gu et al., 2021)

Few-shot Learning Current Practice: Large-scale Fine-tuning

- Zero- and few-shot learning has improved dramatically
 - Sometimes reaching human-level performance (Schick and Schütze, 2021; Shin et al., 2020; Gu et al., 2021)
- One way to mitigate spurious correlations is to minimize manual annotation

Few-shot Learning **Current Practice: Large-scale Fine-tuning**

- Zero- and few-shot learning has improved dramatically
 - Sometimes reaching human-level performance (Schick and Schütze, 2021; Shin et al., 2020; Gu et al., 2021)
- One way to mitigate spurious correlations is to minimize manual annotation lacksquare
- **Do we still need large-scale fine-tuning?**

The End of Large-scale Fine-tuning?

- Limitations

 - lacksquare
- Which tasks?
 - ...)
 - the human baseline

Some spurious correlations may be picked up by the small number of examples Or during pretraining (Gehman et al., 2020; Birhane et al., 2021; Dodge et al., 2021)

Large-scale supervision might still be necessary for some tasks (dialogue, summarization,

• A rule of thumb: datasets or tasks for which the state of the art is close to or surpasses

A Note on Social Biases

- Societal biases are often an undesired artifact of NLP models
 - E.g., gender, race
- In such cases, there might be a justification to *unlearn* them via dataset balancing
 - However, it is not clear that this is a practical goal

Summary

- Background
 - Spurious correlations in NLP datasets
 - What makes a correlation spurious? •
 - Mitigating spurious correlations via dataset balancing
- On the limitations of dataset balancing
 - Practical and conceptual limitations
- Alternatives to dataset balancing
 - Richer context \bullet
 - Interactivity and abstention \bullet
 - Large-scale finetuning -> zero-/few-shot learning

Summary

- Background
 - Spurious correlations in NLP datasets
 - What makes a correlation spurious? ullet
 - Mitigating spurious correlations via dataset balancing
- On the limitations of dataset balancing \bullet
 - Practical and conceptual limitations
- Alternatives to dataset balancing
 - Richer context \bullet
 - Interactivity and abstention
 - Large-scale finetuning -> zero-/few-shot learning

47

