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Benchmarks in NLP
The Premise
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Benchmarks in NLP

Benchmark Baseline Shortly after

SWAG (Zellers et al., 2018) 52% 86% (Devlin et al., 2018)

DROP (Dua et al., 2019) 47 F1 90 F1 (Chen et al., 2020)

HellaSWAG (Zellers et al., 2019) 47% 93% (He et al., 2020)

WinoGrande (Sakaguchi et al., 2020) 53% AUC 88% AUC (Raffel et al., 2020)

Reality
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A (Naive?) Conclusion
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More Like this
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Spurious Correlations

In statistics, a spurious relationship or spurious correlation is a mathematical 
relationship in which two or more events or variables are associated but 
not causally related, due to either coincidence or the presence of a certain 
third, unseen factor. Wikipedia
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https://en.wikipedia.org/wiki/Spurious_relationship


Spurious Correlations and NLP Benchmarks

• Instead of understanding the text, machines pick up on these correlations 
from the training data

• They use the learned correlations to excel on the test sets
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Spurious Correlations and NLP Benchmarks

• Instead of understanding the text, machines pick up on these correlations 
from the training data

• They use the learned correlations to excel on the test sets

• This artificially inflate the state of the art

• As a result, many efforts exist to mitigate these correlations
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Outline

• Background

• Spurious correlations in NLP datasets

• What makes a correlation spurious?

• Mitigating spurious correlations via dataset balancing


• On the limitations of dataset balancing

• Practical and conceptual limitations


• Alternatives to dataset balancing

• Richer context

• Interactivity and abstention

• Large-scale finetuning -> zero-/few-shot learning
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Spurious Correlations in Vision and Language

• VQA dataset

• Antol et al. (2015)


• Input: an image and a question

• What sport is this man playing?

• Do you see a shadow?


• Output: answer

• Tennis, yes
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Spurious Correlations in VQA

• 40% of the questions in VQA starting 
with “What sport is this” are answered 
with “tennis”


• “yes” is the  answer to 87% of the 
questions in the VQA dataset starting 
with “Do you see a” 


• Zhang et al. (2016); Goyal et al. (2017)  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ROC Story Cloze Task
Mostafazadeh et al. (2016)

• A story comprehension task
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ROC Story Cloze Task
Mostafazadeh et al. (2016)

• A story comprehension task

• The task: given a story prefix, distinguish between the coherent and the 
incoherent endings

13



Spurious Correlations in ROC
S. et al. (2017); Cai et al. (2017)

• Train a binary classifier on the endings only 
• Ignoring the story prefix

Li Zilles 14
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Spurious Correlations in ROC
S. et al. (2017); Cai et al. (2017)

• Train a binary classifier on the endings only 
• Ignoring the story prefix

Li Zilles 14



SNLI and MNLI
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SNLI and MNLI

What about NLI datasets?Great question!

SNLI (Bowman et al., 2015); MNLI (Williams et al., 2018)
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Spurious Correlations in NLI Datasets
Gururangan, Swaymdipta, Levy, S., Bowman, Smith (2018); Poliak et al. (2018); Tsuchiya (2018)

• Train a hypothesis-only classifier

• No premise
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• Train a hypothesis-only classifier

• No premise
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Other Spurious Correlations

• Other tasks

• Question answering (Kaushik & Lipton, 2018)

• Winograd Schema (Elazar et al., 2021)


• Are We Modeling the Task or the Annotator?

• Geva et al. (2019)
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• In statistics, a spurious relationship or spurious correlation is a mathematical 
relationship in which two or more events or variables are associated but 
not causally related, due to either coincidence or the presence of a certain 
third, unseen factor. Wikipedia

What are Spurious Correlations?
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What are Spurious Correlations?
Ingenuine correlations

• A feature correlated with some output label for no apparent reason

• E.g., “cat” and “sleeping” are correlated with contradictions in SNLI (Gururangan et al., 

2018)

• Wang and Culotta, 2020; Rogers, 2021
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What are Spurious Correlations?
Ingenuine correlations

• A feature correlated with some output label for no apparent reason

• E.g., “cat” and “sleeping” are correlated with contradictions in SNLI (Gururangan et al., 

2018)

• Wang and Culotta, 2020; Rogers, 2021

• An appealing definition

• But  somewhat subjective

• E.g., the word “not” indicating NLI contradictions; “amazing” as a feature for positive 

sentiment

19
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What are Spurious Correlations?
Ungeneralizable correlations

• A feature that works well for specific examples but does not hold in general 

• Chang et al., 2021;  Yaghoobzadeh et al., 2021

• Does not address the nature of the feature

• Whether genuine or not

• But does assume the feature is important 
• And thus somewhat subjective
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What are Spurious Correlations?
every-word

• Every simple correlation between single word features and output labels is 
spurious

• Gardner et al., 2021
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What are Spurious Correlations?
every-word

• Every simple correlation between single word features and output labels is 
spurious

• Gardner et al., 2021

• Competent datasets: the marginal probability for every feature is uniform over 
the class label


• ∀xi, y ∈ Y, p(y |xi) =
1

|Y |
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Mitigating Spurious Correlations

• Change the model

• Adversarial networks (Belinkov et al., 2019; Grand and Belinkov, 2019; Wang et al., 2019; 

Cadene et al., 2019)

• Model ensembles (Clark et al., 2019,2020; He et al., 2019; Bahng et al., 2020)
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Cadene et al., 2019)

• Model ensembles (Clark et al., 2019,2020; He et al., 2019; Bahng et al., 2020)

• Change the data

• Data balancing
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Mitigating Spurious Correlations via Dataset Balancing
Augmentation

• The key idea: balance-out spurious correlations


• Vision and Language datasets 

• VQA 2.0 (Goyal et al. ,2017)

• GQA (Hudson and Manning, 2019)


• Language only

• ROC stories cloze task 1.5 (Sharma et al., 2018)
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Mitigating Spurious Correlations via Dataset Balancing
Filtering

• Adversarial filtering

• Zellers, Bisk, S., Choi (2018)
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Mitigating Spurious Correlations via Dataset Balancing
Filtering

• Adversarial filtering

• Zellers, Bisk, S., Choi (2018)

• Designed to “systematically discover 
and filter any dataset artifact in 
crowd- sourced commonsense 
problems” (Le Bras et al., 2020)

24



Filtering as Balancing  

• As the adversarial model grows, models will pick up subtler correlations

• Resulting in a fully balanced dataset
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Filtering as Balancing  

• As the adversarial model grows, models will pick up subtler correlations

• Resulting in a fully balanced dataset

• Widely adopted

• Record (Zhang et al., 2018)

• DROP (Dua et al., 2019)

• HellaSWAG (Zellers et al., 2019)


•  (Bhagavatula et al., 2019)

• WinoGrande (Sakaguchi et al., 2020)

• …

αNLI
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Outline

• Background

• Spurious correlations in NLP datasets

• What makes a correlation spurious?
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• Large-scale finetuning -> zero-/few-shot learning
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Balancing too Little is Insufficient 

• The dataset is balanced for unigrams

• But still contains spurious bigrams features

• E.g., “very good”, as “not very good” yields 

negative sentiment
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Toy Example



Balancing too Little is Insufficient 

• The same example can apply with larger n’s
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Balancing too Little is Insufficient 

• The same example can apply with larger n’s

• More broadly, any phrase or feature combination can alter its meaning in 
some context

• Negation, sarcasm, humor, …

• As a result, balancing too little is insufficient for mitigating all spurious 
correlations

30
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Too much Balancing Leaves Nothing 
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Too much Balancing Leaves Nothing 

The dataset is also balanced for unigrams
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Toy Example



Too much Balancing Leaves Nothing 

The dataset is also balanced for unigrams

But if we balance it for bigrams, we are left 
with no learnable signal

31
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• Consider an NLP dataset D with maximal length n
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Too much Balancing Leaves Nothing 

• Consider an NLP dataset D with maximal length n

• By definition, balancing any combination of up to n features (including) leaves 
no learnable signal in D

• Conclusion: balancing too much is not helpful either

32
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Does a sweet-spot exist between 
balancing too little and too much?

33



Is Balancing even Desired? 

• Dataset balancing prevents models from having a fallback option in cases of 
uncertainty

• As these would evidently cause it to make mistakes on some inputs
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Is Balancing even Desired? 

• Dataset balancing prevents models from having a fallback option in cases of 
uncertainty

• As these would evidently cause it to make mistakes on some inputs

• But fallback meanings are crucial for language understanding, as contexts are 
often underspecified 

• Graesser, 2013
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Is Balancing even Desired? 

• Especially relevant for world knowledge and 
common-sense knowledge

• Joe Biden is the president of the US

• A person is typically happy when they receive a 

present
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Is Balancing even Desired? 

• Especially relevant for world knowledge and 
common-sense knowledge

• Joe Biden is the president of the US

• A person is typically happy when they receive a 

present

• As a result, dataset balancing is undesired
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Is dataset balancing the right way forward?
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Outline

• Background

• Spurious correlations in NLP datasets

• What makes a correlation spurious?

• Mitigating spurious correlations via dataset balancing


• On the limitations of dataset balancing
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• Instead of unlearning certain information, we should be focusing on learning 
and modeling richer contexts

Augmenting Datasets with Rich Contexts
Current practice: Dataset Balancing
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• Instead of unlearning certain information, we should be focusing on learning 
and modeling richer contexts

• Example: negation

• Instead of unlearning what “amazing” means, we should focus on learning what “not 

amazing” means

• Negation still poses a challenge for modern NLP models (Hossain et al., 2020,2022)

Augmenting Datasets with Rich Contexts
Current practice: Dataset Balancing
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• Other examples

• Sarcasm (Davidov et al., 2010; Oprea and Magdy, 2020)

• Humor (Weller and Seppi, 2019; Annamoradnejad and Zoghi, 2020)

• Metaphors (Tsvetkov et al., 2014; Mohammad et al., 2016)

• More generally: broad coverage semantics (e.g., CCG, UCCA, AMR)

Augmenting Datasets with Rich Contexts
More Details 
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• Other examples

• Sarcasm (Davidov et al., 2010; Oprea and Magdy, 2020)

• Humor (Weller and Seppi, 2019; Annamoradnejad and Zoghi, 2020)

• Metaphors (Tsvetkov et al., 2014; Mohammad et al., 2016)

• More generally: broad coverage semantics (e.g., CCG, UCCA, AMR)

• Concrete suggestions: adding documents with such contexts throughout the 
(pre)training corpus


• Or alternatively, as a continued pretraining step to existing pretrained models

Augmenting Datasets with Rich Contexts
More Details 
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Abstention/Interaction
Motivation

To my great surprise, the movie turned out different than what I thought.
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Abstention/Interaction
Current practice: a closed labeled set
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Abstention/Interaction
Proposal
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Abstention/Interaction
Proposal

• Abstain / interact when models 
cannot make a confident decision

• Chow, 1957; Hellman, 1970; Laidlaw 

and 525 Feizi, 2019; Balcan et al., 
2020
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Abstention/Interaction
Proposal

• Abstain / interact when models 
cannot make a confident decision

• Chow, 1957; Hellman, 1970; Laidlaw 

and 525 Feizi, 2019; Balcan et al., 
2020

• One example: datasets with 
unanswerable questions 

• Ray et al., 2016; Rajpurkar et al., 

2018; Sulem et al., 2021
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Few-shot Learning
Current Practice: Large-scale Fine-tuning

• Zero- and few-shot learning has improved dramatically

• Sometimes reaching human-level performance (Schick and Schütze, 2021; Shin et al., 

2020; Gu et al., 2021)
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Few-shot Learning
Current Practice: Large-scale Fine-tuning

• Zero- and few-shot learning has improved dramatically

• Sometimes reaching human-level performance (Schick and Schütze, 2021; Shin et al., 

2020; Gu et al., 2021)

• One way to mitigate spurious correlations is to minimize manual annotation

• Do we still need large-scale fine-tuning?
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The End of Large-scale Fine-tuning?

• Limitations

• Some spurious correlations may be picked up by the small number of examples

• Or during pretraining (Gehman et al., 2020; Birhane et al., 2021; Dodge et al., 2021)


• Which tasks?

• Large-scale supervision might still be necessary for some tasks (dialogue, summarization, 

…)

• A rule of thumb: datasets or tasks for which the state of the art is close to or surpasses 

the human baseline
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A Note on Social Biases

• Societal biases are often an undesired artifact of NLP models

• E.g., gender, race


• In such cases, there might be a justification to unlearn them via dataset 
balancing

• However, it is not clear that this is a practical goal
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