Acquiring Semantic Knowledge using Patterns

Roy Schwartz, NLP Lab, The Hebrew University Learning Club, Dec. 4th, 2014

Overview

- NLP
 - Problems and open questions
 - Main approaches
- Lexico-syntactic Patterns
- Latest Results
 - Interpretable Word Embeddings Using Patterns Features (Schwartz, Reichart and Rappoport, under review)

Language Representation

Language Representation

Language Representation

Speech Recognition Language Representation

Speech Recognition Language Representation

NLP is Hard

Ambiguity

Paraphrasing

Complex structures

NLP is Hard

Paraphrasing

Ambiguity

Complex structures

Noise

Language is Hard!

- High Level (Applications)
 - Search
 - Question Answering
 - Machine Translation
 - Summarization
 - Sentiment Analysis

— ...

- High Level (Applications)
 - Search

. . .

- Question Answering
- Machine Translation
- Summarization
- Sentiment Analysis

- Low Level
 - Syntactic
 - Parsing
 - Part-of-speech Tagging

- High Level (Applications)
 - Search
 - Question Answering
 - Machine Translation
 - Summarization
 - Sentiment Analysis
 - ...

- Low Level
 - Syntactic
 - Parsing
 - Part-of-speech Tagging
 - Semantic
 - Semantic Role Labeling
 - Textual Entailment
 - Word Clustering
 - Word Representation

- High Level (Applications)
 - Search
 - Question Answering
 - Machine Translation
 - Summarization
 - Sentiment Analysis
 - ...

- Low Level
 - Syntactic
 - Parsing
 - Part-of-speech Tagging
 - Semantic
 - Semantic Role Labeling
 - Textual Entailment
 - Word Clustering
 - Word Representation

- High Level (Applications)
 - Search
 - Question Answering
 - Machine Translation
 - Summarization
 - Sentiment Analysis
 - ...

- Low Level
 - Syntactic
 - Parsing
 - Part-of-speech Tagging
 - Semantic
 - Semantic Role Labeling
 - Textual Entailment
 - Word Clustering
 - Word Representation

Language Model

- Compute the probability for every sequence of words
 - Required by virtually every high level task (machine translation, questions answering, summarization, speech recognition, etc.)

Language Model

- Compute the probability for every sequence of words
 - Required by virtually every high level task (machine translation, questions answering, summarization, speech recognition, etc.)
- Impossible to compute (exponentially large number of sequences)

Language Model

- Compute the probability for every sequence of words
 - Required by virtually every high level task (machine translation, questions answering, summarization, speech recognition, etc.)
- Impossible to compute (exponentially large number of sequences)
- A common solution: Markov independence assumption
 - Formally: compute p(w_i | w_{i-1}, ..., w_{i-n})
 - *n* usually equals 3 (trigram models)

Neuro-probabilistic Language Models

 Address sparsity by building a (dense) vector word representation (aka *word embeddings*)

- Replace $p(w_i | w_{i-1}, ..., w_{i-n})$ with $p(w_i | V_{i-1}, ..., V_{i-n})$

Neuro-probabilistic Language Models

 Address sparsity by building a (dense) vector word representation (aka *word embeddings*)

- Replace $p(w_i | w_{i-1}, ..., w_{i-n})$ with $p(w_i | V_{i-1}, ..., V_{i-n})$

- Use deep neural networks to train language models
 - Bengio, 2003; Collobert, 2008 & 2011, word2vec (Mikolov 2013{a,b,c})

Neuro-probabilistic Language Models

 Address sparsity by building a (dense) vector word representation (aka *word embeddings*)

- Replace $p(w_i | w_{i-1}, ..., w_{i-n})$ with $p(w_i | V_{i-1}, ..., V_{i-n})$

- Use deep neural networks to train language models
 - Bengio, 2003; Collobert, 2008 & 2011, word2vec (Mikolov 2013{a,b,c})
- Surprisingly, the word representations turned out to be quite successful on their own

Bag of Words Models

- Main type of feature
 - Used in various NLP tasks
 - The idea: use words as features, ignoring words order
 - General principle in computing word embeddings

Bag of Words Models

- Main type of feature
 - Used in various NLP tasks
 - The idea: use words as features, ignoring words order
 - General principle in computing word embeddings

... tokens to date, friend lists and recent ...

... by my dear **friend** and companion, Fritz von ...

... even have a **friend** who never fails ...

... by my worthy **friend** Doctor Haygarth of ...

... and as a **friend** pointed out to ...

... partner, in-laws, relatives or **friends** speak a different ...

... petition to a **friend** Go to the ...

... otherwise, to a friend or family member ...

...images from my **friend** Rory though - ...

... great, and a friend as well as a colleague, who, ...

Bag of Words Models

- Main type of feature
 - Used in various NLP tasks
 - The idea: use words as features, ignoring words order
 - General principle in computing word embeddings

... tokens to date, friend lists and recent ...

... by my dear **friend** and companion, Fritz von ...

... even have a **friend** who never fails ...

... by my worthy **friend** Doctor Haygarth of ...

... and as a **friend** pointed out to ...

... partner, in-laws, relatives or friends speak a different ...

... petition to a **friend** Go to the ...

... otherwise, to a **friend** or family member ...

... images from my friend Rory though - ...

... great, and a friend as well as a colleague, who, ...

word2vec's Skip-Gram Model Mikolov et al., 2013

• A deep learning method designed to learn an NLM

word2vec's Skip-Gram Model Mikolov et al., 2013

- A deep learning method designed to learn an NLM
- For each word w in the vocabulary V, learn both a "target-embedding" v_w and and a "context-embedding" v_c
 - p(c|w) is computed using soft-max:

$$p(c \mid w) = \frac{e^{v_c \cdot v_w}}{\sum_{w' \in V} e^{v_c \cdot v_{w'}}}$$

word2vec's Skip-Gram Model Mikolov et al., 2013

- A deep learning method designed to learn an NLM
- For each word w in the vocabulary V, learn both a "target-embedding" v_w and and a "context-embedding" v_c
 - p(c|w) is computed using soft-max:

$$p(c \mid w) = \frac{e^{v_c \cdot v_w}}{\sum_{w' \in V} e^{v_c \cdot v_{w'}}}$$

- For each training sentence, treat each word in turn as a target word
 - Sample (word,context) pairs from a window of nearby words

word2vec's Skip-Gram Model (2) Mikolov et al., 2013

Objective function:

Algorithm: Stochastic gradient descent

Word Embeddings Applications

- Information Retrieval
- Document Classification
- Question Answering
- Named Entity Recognition
- Parsing

...

•

Word Embeddings (Cool!) Properties

• (accurate) Word similarity

Word Embeddings (Cool!) Properties

• (accurate) Word similarity

• Word analogy

(Mikolov et al., 2013)

Word Embeddings Limitations

- Resulting vectors are highly **uninterpretable**
 - Sequences of several hundred numbers
 - Not clear what each number represents

Word Embeddings Limitations

- Resulting vectors are highly **uninterpretable**
 - Sequences of several hundred numbers
 - Not clear what each number represents
- Restricted to a limited set of relations
 - Similarity/Relatedness, some analogies
 - Other relations are not supported: hyponymy (animal → dog), antonymy (big/tall), etc.

Lexico-syntactic Patterns Hearst, 1992

- Patterns that contain words and wildcards
 - "X is a country", "X such as Y", etc.

Lexico-syntactic Patterns Hearst, 1992

- Patterns that contain words and wildcards
 - "X is a country", "X such as Y", etc.
- Patterns potentially capture the context in which a word participates
Lexico-syntactic Patterns Hearst, 1992

• Patterns that contain words and wildcards

- Patterns potentially capture the context in which a word participates
- For example:
 - A *dog* participates in patterns (contexts) such as:
 - "X barks", "X has a tail", "X and cats", ...

^{- &}quot;X is a country", "X such as Y", etc.

Pattern Applications

- Acquiring the semantics of **relationships** between words
 - Discovering hyponymy (animal \rightarrow cat) (Hearst, 1992)
 - Discovering meronymy (cat \rightarrow tail) (Berland & Charniak, 1999)
 - Discovering antonymy (big / small) (Lin, 2003)
- Word clustering and classification
 - Davidov & Rappoport, 2006; Schwartz, Reichart & Rappoport, 2014
- Sentence Level Applications
 - Sarcasm Detection (Tsur, Davidov & Rappoport, 2010)
 - Sentiment Analysis (Davidov, Tsur, & Rappoport, 2010)
 - Authorship Attribution (Schwartz et al., 2013)

Examples of Patterns

- Extracting antonymy (opposite) relations
 - "either X or Y"
 - John is either tall or short
 - either stay or come with us

Examples of Patterns

- Extracting antonymy (opposite) relations
 - "either X or Y"
 - John is either tall or short
 - either stay or come with us
- Extracting hyponymy (is-a) relations
 - "X such as Y"
 - Cut the stems of boxed *flowers such as roses*
 - I am responsible for preparing a range of **fruits such as apples**

Word Similarity via Patterns

- Some patterns are useful for identifying words that are similar*
 - mouse / rat , shirt / sweater, etc.

This is something that word embeddings are generally good at

Word Similarity via Patterns

- Some patterns are useful for identifying words that are similar*
 - mouse / rat , shirt / sweater, etc.
- These patterns are **symmetric**
 - Contain exactly two wildcards (X,Y)
 - Words w_i, w_j that co-occur in these patterns can come in both forms (X=w_i, Y=w_j) and (X=w_j, Y=w_i)

This is something that word embeddings are generally good at

Symmetric Patterns (SPs)

- X and Y
 - cats and dogs , dogs and cats
 - France and England, England and France
- X as well as Y
 - friends as well as colleagues, colleagues as well as friends
 - apples and oranges , oranges and apples

Automatically Extracted Symmetric Patterns

The (Davidov and Rappoport, 2006) Algorithm

- A graph-based algorithm
 - Input: a corpus of plain text
 - Output: a set of symmetric patterns

Automatically Extracted Symmetric Patterns The (Davidov and Rappoport, 2006) Algorithm

- A graph-based algorithm
 - Input: a corpus of plain text
 - Output: a set of symmetric patterns
- The idea: search for patterns with **interchangeable** word pairs
 - For each pattern candidate, compute symmetry measure (M)
 - Select the N patterns with the highest M values

Automatically Extracted Symmetric Patterns (2) The (Davidov and Rappoport, 2006) Algorithm

- The M measure counts the proportion of pattern instances that appear in both directions ("cat and dog" + "dog and cat")
- High M value → A symmetric pattern

So Far

- Word embeddings are great
 - Useful for down stream applications
 - Have cool properties (similarity, word analogies)

So Far

- Word embeddings are great
 - Useful for down stream applications
 - Have cool properties (similarity, word analogies)
- But not perfect
 - Uninterpretable
 - Unable to recognize various relations

Interpretable Word Embeddings Using Pattern Features

Roy Schwartz, Roi Reichart and Ari Rappoport (Under Revision)

Outline

- Learn interpretable and high quality word embeddings
 - Substantially outperform state-of-the-art word2vec embeddings
- Show the benefits of interpretability
 - Use our embeddings to assign dissimilar vectors to antonym pairs (big/small)
- Combine our embeddings with state-of-the-art embeddings to get improved expressive power

Symmetric Patterns to Word Similarity

• Input: a large corpus C

Symmetric Patterns to Word Similarity

- Input: a large corpus C
- Extract a set of SPs *P* using the DR06 algorithm
 - "X and Y", "X or Y", "X and the Y", "from X to Y", "X or the Y", "X as well as Y", "X or a Y", "X rather than Y", "X nor Y", "X and one Y", "either X or Y"

Symmetric Patterns to Word Similarity

- Input: a large corpus C
- Extract a set of SPs *P* using the DR06 algorithm
 - "X and Y", "X or Y", "X and the Y", "from X to Y", "X or the Y", "X as well as Y", "X or a Y", "X rather than Y", "X nor Y", "X and one Y", "either X or Y"
- Traverse C, extract all instances of all p in P
 - cats and dogs
 - House and the rooms
 - from France to England

Acquiring Semantic Knowledge using Patterns @ Roy Schwartz

Symmetric Patterns to Word Similarity (2)

 For each word w in the lexicon, build a count vector (V_w) of all other words that co-occur with w in SPs

Symmetric Patterns to Word Similarity (2)

- For each word *w* in the lexicon, build a count vector (V_w) of all other words that co-occur with *w* in SPs
- orange

. . .

- 1. ... apples and oranges ...
- 2. ... oranges as well as grapes
- K. ... neither banana nor orange

China

. . .

- 1. ... Japan or China ...
- 2. ... China rather than Korea
- M. ... Vietnam and China ...

Symmetric Patterns to Word Similarity (3)

 Compute the Positive Pointwise Mutual Information (PPMI) between each pair of words

$$PMI(w_i, w_j) = \log\left(\frac{p(w_i, w_j)}{p(w_i)p(w_j)}\right)$$

$$PPMI(w_i, w_j) = \begin{cases} PMI(w_i, w_j) < 0:0\\ otherwise: PMI(w_i, w_j) \end{cases}$$

The Result: Interpretable Word Embeddings based on Symmetric Patterns

PPMI(dog,house) PPMI(dog,mouse) PPMI(dog,zebra) PPMI(dog,wine) PPMI(dog,cat) PPMI(dog,dolphin) PPMI(dog,bottle) PPMI(dog,pen)

V^{sp}dog =

The Result: Interpretable Word Embeddings based on Symmetric Patterns

PPMI(dog,house) PPMI(dog,mouse) PPMI(dog,zebra) PPMI(dog,wine) PPMI(dog,cat) PPMI(dog,dolphin) PPMI(dog,bottle) PPMI(dog,pen)

\/sp

 $|V^{SP}_{w}| = -500K$

 $E_w(|nonzero(V^{SP}_w)|) = \sim 50$

Smoothing

• For each word w, V_w^N denotes the top N vectors with the smallest cosine distance to V_w^{SP}

$$V_{w}^{\text{SP'}} = V_{w}^{\text{SP}} + \alpha \sum_{v \in V_{w}^{N}} v$$

- Using N=50: E_w(|nonzero(V^{SP'}_w)|) = ~8K
- $\boldsymbol{\diamond}$ $\boldsymbol{\alpha}$ and *N* are tuned using a development set

big / small

big / small

- Antonyms appear in similar contexts
 - Here is a X car
 - I live in a X house

big / small

- Antonyms appear in similar contexts
 - Here is a X car
 - I live in a X house

 \rightarrow In typical word embeddings, $\cos(V_{big}, V_{small})$ is high

big / small

- Some symmetric patterns are indicative of antonymy*
 - "either X or Y" (either big or small), "from X to Y" (from poverty to richness)

* Lin et al. (2003)

• A variant of our model that assigns dissimilar vectors to antonym pairs

- A variant of our model that assigns dissimilar vectors to antonym pairs
- For each word *w*, compute V_w^{AP} similarly to V_w^{SP} , but using the set of antonym patterns

$$V_{w}^{\rm AP'} = V_{w}^{\rm SP} - \beta \cdot V_{w}^{\rm AP}$$

\clubsuit β is tuned using a development set

Experiments

- Word similarity task
 - Experiments with the SimLex999 dataset (Hill et al., 2014)
 - 999 word pairs, each assigned a similarity score by human annotators
 - $f_{\text{model}}(w_i, w_j) = \cos(V^{\text{model}}_{w_i}, V^{\text{model}}_{w_j})$
 - Evaluation results is the Spearman's ρ score between model and human judgments
 - Numbers are average scores of 10 folds of 25% (dev) / 75 (test) partitions
 - Baselines: 2 interpretable baselines, 3 state-of-the-art, non-interpretable baselines

Interpretable?	Model	Spearman's ρ
Non-interpretable	GloVe	0.426
	CBOW	0.43
	skip-gram	0.462
Interpretable	BOW	0.423
	NNSE	0.455
	$SP^{(+)}$	0.502

Experiments

- Word similarity task
 - Experiments with the SimLex999 dataset (Hill et al., 2014)
 - 999 word pairs, each assigned a similarity score by human annotators
 - $f_{\text{model}}(w_i, w_j) = \cos(V^{\text{model}}_{w_i}, V^{\text{model}}_{w_j})$
 - Evaluation results is the Spearman's ρ score between model and human judgments
 - Numbers are average scores of 10 folds of 25% (dev) / 75 (test) partitions
 - Baselines: 2 interpretable baselines, 3 state-of-the-art, non-interpretable baselines

Interpretable?	Model	Spearman's ρ
Non-interpretable	GloVe	0.426
	CBOW	0.43
	skip-gram	0.462
Interpretable	BOW	0.423
	NNSE	0.455
	SP ⁽⁺⁾	0.502

Experiments

- Word similarity task
 - Experiments with the SimLex999 dataset (Hill et al., 2014)
 - 999 word pairs, each assigned a similarity score by human annotators
 - $f_{<\text{model}>}(w_i, w_j) = \cos(V^{<\text{model}>}_{wi}, V^{<\text{model}>}_{wj})$
 - Evaluation results is the Spearman's ρ score between model and human judgments
 - Numbers are average scores of 10 folds of 25% (dev) / 75 (test) partitions
 - Baselines: 2 interpretable baselines, 3 state-of-the-art, non-interpretable baselines

Interpretable?	Model	Spearman's ρ
Non-interpretable	GloVe	0.426
	CBOW	0.43
	skip-gram	0.462
Interpretable	BOW	0.423
	NNSE	0.455
	$SP^{(+)}$	0.502
Antonyms

Word Pair	SP		SC
	+AN	-AN	50
new - old	1	6	6
narrow - wide	1	7	8
necessary - unnecessary	2	2	9
bottom - top	3	8	10
absence - presence	4	7	9
receive - send	1	9	8
fail - succeed	1	8	6

Joint Model

$f_{joint}(w_{i\prime}w_{j}) = \gamma \cdot f_{SP}(w_{i\prime}w_{j}) + (1 - \gamma) \cdot f_{skip-gram}(w_{i\prime}w_{j})$

Interpretable?	Model	Spearman's ρ
Non-interpretable	GloVe	0.426
	CBOW	0.43
	skip-gram	0.462
Interpretable	BOW	0.423
	NNSE	0.455
	$SP^{(+)}$	0.502
Joint		0.528
Average Huma	n Score	0.651

 $\diamond \gamma$ determined using a development set

Joint Model

$f_{joint}(w_{i\prime}w_{j}) = \gamma \cdot f_{SP}(w_{i\prime}w_{j}) + (1 - \gamma) \cdot f_{skip-gram}(w_{i\prime}w_{j})$

Interpretable?	Model	Spearman's ρ
Non-interpretable	GloVe	0.426
	CBOW	0.43
	skip-gram	0.462
Interpretable	BOW	0.423
	NNSE	0.455
	SP ⁽⁺⁾	0.502
Joint		0.528
Average Huma	in Score	0.651

 $\diamond \gamma$ determined using a development set

Reminder: word2vec's Skip-Gram Model (Mikolov et al., 2013)

Objective function:

$$\max \sum_{t=1}^{T} \sum_{-c \le j \le c, j \ne 0} \log p(w_{t+j}|w_t)$$

Pre-processing?

Enhance plain text with symmetric pattern information?

Pre-processing?

Smarter Objective Function?

max $\Sigma p(c|w)$ + constraint

Pre-processing?

Smarter Objective Function?

Summary

- Patterns are useful for extracting semantic information
- Symmetric patterns are as useful (actually more useful) as state-of-the-art word embeddings in modeling word similarity
 - 4-7.9 points gap
- Patterns can capture relations that word embeddings cannot
 - Antonymy
- SPs can be combined along with state-of-the-art embeddings to create an even more accurate representation
 - 6.6 points higher than state-of-the-art

roys02@cs.huji.ac.il http://www.cs.huji.ac.il/~roys02/

