Acquiring Semantic Knowledge using Patterns

Roy Schwartz, NLP Lab, The Hebrew University
Learning Club, Dec. 4th, 2014
Overview

• NLP
 – Problems and open questions
 – Main approaches

• Lexico-syntactic Patterns

• Latest Results
 – Interpretable Word Embeddings Using Patterns Features (Schwartz, Reichart and Rappoport, under review)
NLP
NLP

Text Understanding
NLP

Language Representation

Text Understanding
Acquiring Semantic Knowledge using Patterns
@ Roy Schwartz
Language Representation

Text Generation

Text Understanding
Acquiring Semantic Knowledge using Patterns
@ Roy Schwartz
Acquiring Semantic Knowledge using Patterns
@ Roy Schwartz
NLP is Hard

Ambiguity

Noise

Paraphrasing

Complex structures
NLP is Hard

Language is Hard!
NLP Tasks

• High Level (Applications)
 – Search
 – Question Answering
 – Machine Translation
 – Summarization
 – Sentiment Analysis
 – ...

Acquiring Semantic Knowledge using Patterns
@ Roy Schwartz
NLP Tasks

• High Level (Applications)
 – Search
 – Question Answering
 – Machine Translation
 – Summarization
 – Sentiment Analysis
 – ...

• Low Level
 – Syntactic
 • Parsing
 • Part-of-speech Tagging
NLP Tasks

High Level (Applications)
- Search
- Question Answering
- Machine Translation
- Summarization
- Sentiment Analysis
- ...

Low Level
- Syntactic
 - Parsing
 - Part-of-speech Tagging
- Semantic
 - Semantic Role Labeling
 - Textual Entailment
 - Word Clustering
 - Word Representation
NLP Tasks

• High Level (Applications)
 – Search
 – Question Answering
 – Machine Translation
 – Summarization
 – Sentiment Analysis
 – ...

• Low Level
 – Syntactic
 • Parsing
 • Part-of-speech Tagging
 – Semantic
 • Semantic Role Labeling
 • Textual Entailment
 • Word Clustering
 • Word Representation

Acquiring Semantic Knowledge using Patterns
@ Roy Schwartz
NLP Tasks

• **High Level (Applications)**
 – Search
 – Question Answering
 – Machine Translation
 – Summarization
 – Sentiment Analysis
 – ...

• **Low Level**
 – Syntactic
 • Parsing
 • Part-of-speech Tagging
 – Semantic
 • Semantic Role Labeling
 • Textual Entailment
 • Word Clustering
 • **Word Representation**
Language Model

• Compute the probability for every sequence of words
 – Required by virtually every high level task (machine translation, questions answering, summarization, speech recognition, etc.)
Language Model

• Compute the probability for every sequence of words
 – Required by virtually every high level task (machine translation, questions answering, summarization, speech recognition, etc.)

• Impossible to compute (exponentially large number of sequences)
Language Model

• Compute the probability for every sequence of words
 – Required by virtually every high level task (machine translation, questions answering, summarization, speech recognition, etc.)

• Impossible to compute (exponentially large number of sequences)

• A common solution: Markov independence assumption
 – Formally: compute $p(w_i | w_{i-1}, \ldots, w_{i-n})$
 – n usually equals 3 (trigram models)
Neuro-probabilistic Language Models

• Address sparsity by building a (dense) vector word representation (aka *word embeddings*)
 – Replace \(p(w_i | w_{i-1}, ..., w_{i-n}) \) with \(p(w_i | V_{i-1}, ..., V_{i-n}) \)
Neuro-probabilistic Language Models

• Address sparsity by building a (dense) vector word representation (aka *word embeddings*)
 – Replace $p(w_i | w_{i-1}, ..., w_{i-n})$ with $p(w_i | V_{i-1}, ..., V_{i-n})$

• Use deep neural networks to train language models
 – Bengio, 2003; Collobert, 2008 & 2011, *word2vec* (Mikolov 2013{a,b,c})
Neuro-probabilistic Language Models

• Address sparsity by building a (dense) vector word representation (aka \textit{word embeddings})
 – Replace \(p(w_i | w_{i-1}, ..., w_{i-n}) \) with \(p(w_i | V_{i-1}, ..., V_{i-n}) \)

• Use deep neural networks to train language models
 – Bengio, 2003; Collobert, 2008 & 2011, \textit{word2vec} (Mikolov 2013\{a,b,c\})

• Surprisingly, the word representations turned out to be quite successful on their own
Bag of Words Models

• Main type of feature
 – Used in various NLP tasks
 – The idea: use words as features, ignoring words order
 – General principle in computing word embeddings
Main type of feature

- Used in various NLP tasks
- The idea: use words as features, ignoring words order
- General principle in computing **word embeddings**

 ... tokens to date, **friend** lists and recent ...
 ... by my dear **friend** and companion, Fritz von ...
 ... even have a **friend** who never fails ...
 ... by my worthy **friend** Doctor Haygarth of ...
 ... and as a **friend** pointed out to ...
 ... partner, in-laws, relatives or **friends** speak a different ...
 ... petition to a **friend** Go to the ...
 ... otherwise, to a **friend** or family member ...
 ...images from my **friend** Rory though - ...
 ... great, and a **friend** as well as a colleague, who, ...
Bag of Words Models

• Main type of feature
 – Used in various NLP tasks
 – The idea: use words as features, ignoring words order
 – General principle in computing word embeddings

... tokens to date, friend lists and recent ...
... by my dear friend and companion, Fritz von ...
... even have a friend who never fails ...
... by my worthy friend Doctor Haygarth of ...
... and as a friend pointed out to ...
... partner, in-laws, relatives or friends speak a different ...
... petition to a friend Go to the ...
... otherwise, to a friend or family member ...
... images from my friend Rory though - ...
... great, and a friend as well as a colleague, who, ...
...
word2vec’s Skip-Gram Model
Mikolov et al., 2013

• A deep learning method designed to learn an NLM
word2vec’s Skip-Gram Model
Mikolov et al., 2013

- A deep learning method designed to learn an NLM

- For each word \(w \) in the vocabulary \(V \), learn both a “target-embedding” \(v_w \) and a “context-embedding” \(v_c \)
 - \(p(c|w) \) is computed using soft-max:

\[
p(c \mid w) = \frac{e^{v_c \cdot v_w}}{\sum_{w' \in V} e^{v_c \cdot v_{w'}}}
\]
word2vec’s Skip-Gram Model
Mikolov et al., 2013

- A deep learning method designed to learn an NLM

- For each word w in the vocabulary V, learn both a “target-embedding” v_w and a “context-embedding” v_c
 - $p(c|w)$ is computed using soft-max:
 $$p(c|w) = \frac{e^{v_c v_w}}{\sum_{w' \in V} e^{v_c v_{w'}}}$$

- For each training sentence, treat each word in turn as a target word
 - Sample (word, context) pairs from a window of nearby words
word2vec’s Skip-Gram Model (2)

Mikolov et al., 2013

Objective function:

\[
\max_{\theta} \sum_{t=1}^{T} \sum_{-c \leq j \leq c, j \neq 0} \log p(w_{t+j} | w_t)
\]

Algorithm:

Stochastic gradient descent
Word Embeddings Applications

- Information Retrieval
- Document Classification
- Question Answering
- Named Entity Recognition
- Parsing
- ...
Word Embeddings (Cool!) Properties

- (accurate) Word similarity
Word Embeddings (Cool!) Properties

- (accurate) Word similarity
- Word analogy

(Mikolov et al., 2013)
Word Embeddings Limitations

• Resulting vectors are highly **uninterpretable**
 – Sequences of several hundred numbers
 – Not clear what each number represents
Word Embeddings Limitations

• Resulting vectors are highly **uninterpretable**
 – Sequences of several hundred numbers
 – Not clear what each number represents

• Restricted to a limited set of relations
 – Similarity/Relatedness, some analogies
 – Other relations are not supported: hyponymy (animal \rightarrow dog), antonymy (big/tall), etc.
Lexico-syntactic Patterns
Hearst, 1992

• Patterns that contain words and wildcards
 – “X is a country”, “X such as Y”, etc.
Lexico-syntactictic Patterns
Hearst, 1992

• Patterns that contain words and wildcards
 – “X is a country”, “X such as Y”, etc.

• Patterns potentially capture the context in which a word participates
Lexico-syntactic Patterns
Hearst, 1992

• Patterns that contain words and wildcards
 – “X is a country”, “X such as Y”, etc.

• Patterns potentially capture the context in which a word participates

• For example:
 – A dog participates in patterns (contexts) such as:
 – “X barks”, “X has a tail”, “X and cats”, ...
Pattern Applications

• Acquiring the semantics of relationships between words
 – Discovering hyponymy (animal \rightarrow cat) (Hearst, 1992)
 – Discovering meronymy (cat \rightarrow tail) (Berland & Charniak, 1999)
 – Discovering antonymy (big / small) (Lin, 2003)

• Word clustering and classification
 – Davidov & Rappoport, 2006; Schwartz, Reichart & Rappoport, 2014

• Sentence Level Applications
 – Sarcasm Detection (Tsur, Davidov & Rappoport, 2010)
 – Sentiment Analysis (Davidov, Tsur, & Rappoport, 2010)
 – Authorship Attribution (Schwartz et al., 2013)
Examples of Patterns

• Extracting antonymy (opposite) relations
 – “either X or Y”
 – John is either tall or short
 – either stay or come with us
Examples of Patterns

• Extracting antonymy (opposite) relations
 – “either X or Y”
 – John is either tall or short
 – either stay or come with us

• Extracting hyponymy (is-a) relations
 – “X such as Y”
 – Cut the stems of boxed flowers such as roses
 – I am responsible for preparing a range of fruits such as apples
Word Similarity via Patterns

• Some patterns are useful for identifying words that are similar*
 – mouse / rat, shirt / sweater, etc.

 ❖ This is something that word embeddings are generally good at
Word Similarity via Patterns

• Some patterns are useful for identifying words that are similar*
 – mouse / rat, shirt / sweater, etc.

• These patterns are symmetric
 – Contain exactly two wildcards \((X, Y)\)
 – Words \(w_i, w_j\) that co-occur in these patterns can come in both forms \((X=w_i, Y=w_j)\) and \((X=w_j, Y=w_i)\)

⚠️ This is something that word embeddings are generally good at
Symmetric Patterns (SPs)

• **X and Y**
 – cats and dogs, dogs and cats
 – France and England, England and France

• **X as well as Y**
 – friends as well as colleagues, colleagues as well as friends
 – apples and oranges, oranges and apples

• ….
Automatically Extracted Symmetric Patterns

The (Davidov and Rappoport, 2006) Algorithm

• A graph-based algorithm
 – Input: a corpus of plain text
 – Output: a set of symmetric patterns
Automatically Extracted Symmetric Patterns
The (Davidov and Rappoport, 2006) Algorithm

• A graph-based algorithm
 – Input: a corpus of plain text
 – Output: a set of symmetric patterns

• The idea: search for patterns with interchangeable word pairs
 – For each pattern candidate, compute symmetry measure (M)
 – Select the N patterns with the highest M values
Automatically Extracted Symmetric Patterns (2)

The (Davidov and Rappoport, 2006) Algorithm

• The M measure counts the proportion of pattern instances that appear in both directions (“cat and dog” + “dog and cat”)

• High M value \rightarrow A symmetric pattern
DR06 Example

X and Y
DR06 Example

X and Y

Symmetric edges
Acquiring Semantic Knowledge using Patterns
@ Roy Schwartz
Acquiring Semantic Knowledge using Patterns

DR06 Example

Symmetric edges

Asymmetric edges

X and Y

Dog

Cat

Computer

Rat

Camera

M = \#symmetric_edges

\#all_edges

M = \#symmetric_edges

\#all_edges
So Far

• Word embeddings are great
 – Useful for down stream applications
 – Have cool properties (similarity, word analogies)
So Far

• **Word embeddings are great**
 – Useful for downstream applications
 – Have cool properties (similarity, word analogies)

• **But not perfect**
 – Uninterpretable
 – Unable to recognize various relations
Interpretable Word Embeddings Using Pattern Features

Roy Schwartz, Roi Reichart and Ari Rappoport
(Under Revision)
Outline

• Learn **interpretable** and **high quality** word embeddings
 – Substantially outperform state-of-the-art word2vec embeddings

• Show the benefits of interpretability
 – Use our embeddings to assign dissimilar vectors to antonym pairs (big/small)

• Combine our embeddings with state-of-the-art embeddings to get improved expressive power
Symmetric Patterns to Word Similarity

• Input: a large corpus C
Symmetric Patterns to Word Similarity

• Input: a large corpus C

• Extract a set of SPs P using the DR06 algorithm
 – “X and Y”, “X or Y”, “X and the Y”, “from X to Y”, “X or the Y”, “X as well as Y”, “X or a Y”, “X rather than Y”, “X nor Y”, “X and one Y”, “either X or Y”
Symmetric Patterns to Word Similarity

• Input: a large corpus C

• Extract a set of SPs P using the DR06 algorithm
 – “X and Y”, “X or Y”, “X and the Y”, “from X to Y”, “X or the Y”, “X as well as Y”, “X or a Y”, “X rather than Y”, “X nor Y”, “X and one Y”, “either X or Y”

• Traverse C, extract all instances of all p in P
 – cats and dogs
 – House and the rooms
 – from France to England
 – ...

Acquiring Semantic Knowledge using Patterns
@ Roy Schwartz
Symmetric Patterns to Word Similarity (2)

• For each word w in the lexicon, build a count vector (V_w) of all other words that co-occur with w in SPs.
Symmetric Patterns to Word Similarity (2)

- For each word w in the lexicon, build a count vector (V_w) of all other words that co-occur with w in SPs

- **orange**
 1. ... apples and oranges ...
 2. ... oranges as well as grapes ...
 K. ... neither banana nor orange

- **China**
 1. ... Japan or China ...
 2. ... China rather than Korea ...
 M. ... Vietnam and China ...
Symmetric Patterns to Word Similarity (3)

- Compute the Positive Pointwise Mutual Information (PPMI) between each pair of words

\[
PMI(w_i, w_j) = \log \left(\frac{p(w_i, w_j)}{p(w_i) p(w_j)} \right)
\]

\[
PPMI(w_i, w_j) = \begin{cases}
PMI(w_i, w_j) < 0 : 0 \\
otherwise : PMI(w_i, w_j)
\end{cases}
\]
The Result: **Interpretable** Word Embeddings based on Symmetric Patterns

\[
V_{\text{dog}}^{sp} = \{ \text{PPMI(\text{dog,house})}, \text{PPMI(\text{dog,mouse})}, \text{PPMI(\text{dog,zebra})}, \text{PPMI(\text{dog,wine})}, \text{PPMI(\text{dog,cat})}, \text{PPMI(\text{dog,dolphin})}, \text{PPMI(\text{dog,bottle})}, \text{PPMI(\text{dog,pen})} \}
\]
The Result: **Interpretable** Word Embeddings based on Symmetric Patterns

\[V_{\text{dog}}^{\text{sp}} = \{ \text{PPMI(} \text{dog,house}) , \text{PPMI(} \text{dog,mouse} \} \text{,PPMI(} \text{dog,zebra}) , \text{PPMI(} \text{dog,wine}) , \text{PPMI(} \text{dog,cat}) , \text{PPMI(} \text{dog,dolphin}) , \text{PPMI(} \text{dog,bottle}) , \text{PPMI(} \text{dog,pen}) \} \]

\[|V_{w}^{SP}| = \sim 500K \]

\[E_{w}(|\text{nonzero}(V_{w}^{SP})|) = \sim 50 \]
Smoothing

- For each word w, V^N_w denotes the top N vectors with the smallest cosine distance to V^{SP}_w

$$V^{SP'}_w = V^{SP}_w + \alpha \sum_{v \in V^N_w} v$$

- Using $N=50$: $E_w(|\text{nonzero}(V^{SP'}_w)|) = \sim 8K$

- α and N are tuned using a development set
Antonyms

big / small
Antonyms

big / small

• Antonyms appear in similar contexts
 • Here is a X car
 • I live in a X house
Antonyms

big / small

- Antonyms appear in similar contexts
 - Here is a \(X\) car
 - I live in a \(X\) house

⇒ In typical word embeddings, \(\cos(V_{\text{big}}, V_{\text{small}})\) is high
Antonyms

big / small

• Some symmetric patterns are indicative of antonymy*
 – “either X or Y” (either big or small), “from X to Y” (from poverty to richness)

* Lin et al. (2003)
Antonyms

• A variant of our model that assigns dissimilar vectors to antonym pairs
Antonyms

• A variant of our model that assigns dissimilar vectors to antonym pairs

• For each word \(w \), compute \(V_w^{AP'} \) similarly to \(V_w^{SP} \), but using the set of antonym patterns

\[
V_w^{AP'} = V_w^{SP} - \beta \cdot V_w^{AP}
\]

❖ \(\beta \) is tuned using a development set
Experiments

- **Word similarity task**
 - Experiments with the SimLex999 dataset (Hill et al., 2014)
 - 999 word pairs, each assigned a similarity score by human annotators
 - $f_{\text{model}}(w_i, w_j) = \cos(V_{\text{model}}^w_i, V_{\text{model}}^w_j)$
 - Evaluation results is the Spearman’s ρ score between model and human judgments
 - Numbers are average scores of 10 folds of 25% (dev) / 75 (test) partitions
 - Baselines: 2 interpretable baselines, 3 state-of-the-art, non-interpretable baselines

<table>
<thead>
<tr>
<th>Interpretable?</th>
<th>Model</th>
<th>Spearman’s ρ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-interpretable</td>
<td>GloVe</td>
<td>0.426</td>
</tr>
<tr>
<td></td>
<td>CBOW</td>
<td>0.43</td>
</tr>
<tr>
<td></td>
<td>skip-gram</td>
<td>0.462</td>
</tr>
<tr>
<td>Interpretable</td>
<td>BOW</td>
<td>0.423</td>
</tr>
<tr>
<td></td>
<td>NNSE</td>
<td>0.455</td>
</tr>
<tr>
<td></td>
<td>SP(+)</td>
<td>0.502</td>
</tr>
</tbody>
</table>
Word similarity task

- Experiments with the SimLex999 dataset (Hill et al., 2014)
- 999 word pairs, each assigned a similarity score by human annotators
- $f_{model}(w_i, w_j) = \cos(V_{model}^w_i, V_{model}^w_j)$
- Evaluation results is the Spearman’s ρ score between model and human judgments
- Numbers are average scores of 10 folds of 25% (dev) / 75 (test) partitions
- Baselines: 2 interpretable baselines, 3 state-of-the-art, non-interpretable baselines

<table>
<thead>
<tr>
<th>Interpretable?</th>
<th>Model</th>
<th>Spearman’s ρ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-interpretable</td>
<td>GloVe</td>
<td>0.426</td>
</tr>
<tr>
<td></td>
<td>CBOW</td>
<td>0.43</td>
</tr>
<tr>
<td></td>
<td>skip-gram</td>
<td>0.462</td>
</tr>
<tr>
<td>Interpretable</td>
<td>BOW</td>
<td>0.423</td>
</tr>
<tr>
<td></td>
<td>NNSE</td>
<td>0.455</td>
</tr>
<tr>
<td></td>
<td>SP(+)</td>
<td>0.502</td>
</tr>
</tbody>
</table>
Experiments

• Word similarity task
 – Experiments with the SimLex999 dataset (Hill et al., 2014)
 – 999 word pairs, each assigned a similarity score by human annotators
 – \(f_{<\text{model}>}(w_i, w_j) = \cos(V_{<\text{model}>}_{w_i}, V_{<\text{model}>}_{w_j}) \)
 – Evaluation results is the Spearman’s \(\rho \) score between model and human judgments
 – Numbers are average scores of 10 folds of 25% (dev) / 75 (test) partitions
 – Baselines: 2 interpretable baselines, 3 state-of-the-art, non-interpretable baselines

<table>
<thead>
<tr>
<th>Interpretable?</th>
<th>Model</th>
<th>Spearman’s (\rho)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-interpretable</td>
<td>GloVe</td>
<td>0.426</td>
</tr>
<tr>
<td></td>
<td>CBOW</td>
<td>0.43</td>
</tr>
<tr>
<td></td>
<td>skip-gram</td>
<td>0.462</td>
</tr>
<tr>
<td>Interpretable</td>
<td>BOW</td>
<td>0.423</td>
</tr>
<tr>
<td></td>
<td>NNSE</td>
<td>0.455</td>
</tr>
<tr>
<td></td>
<td>SP(^{(+)})</td>
<td>0.502</td>
</tr>
</tbody>
</table>
Antonyms

<table>
<thead>
<tr>
<th>Word Pair</th>
<th>(SP)</th>
<th>(SG)</th>
</tr>
</thead>
<tbody>
<tr>
<td>new - old</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>narrow - wide</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>necessary - unnecessary</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>bottom - top</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>absence - presence</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>receive - send</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>fail - succeed</td>
<td>1</td>
<td>8</td>
</tr>
</tbody>
</table>
Joint Model

\[f_{\text{joint}}(w_i, w_j) = \gamma \cdot f_{SP}(w_i, w_j) + (1 - \gamma) \cdot f_{\text{skip-gram}}(w_i, w_j) \]

<table>
<thead>
<tr>
<th>Interpretable?</th>
<th>Model</th>
<th>Spearman’s ρ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-interpretable</td>
<td>GloVe</td>
<td>0.426</td>
</tr>
<tr>
<td></td>
<td>CBOW</td>
<td>0.43</td>
</tr>
<tr>
<td></td>
<td>skip-gram</td>
<td>0.462</td>
</tr>
<tr>
<td>Interpretable</td>
<td>BOW</td>
<td>0.423</td>
</tr>
<tr>
<td></td>
<td>NNSE</td>
<td>0.455</td>
</tr>
<tr>
<td></td>
<td>SP(+)</td>
<td>0.502</td>
</tr>
<tr>
<td>Joint</td>
<td></td>
<td>0.528</td>
</tr>
<tr>
<td>Average Human Score</td>
<td></td>
<td>0.651</td>
</tr>
</tbody>
</table>

\(\gamma\) determined using a development set
Joint Model

\[f_{joint}(w_i, w_j) = \gamma \cdot f_{SP}(w_i, w_j) + (1 - \gamma) \cdot f_{skip-gram}(w_i, w_j) \]

<table>
<thead>
<tr>
<th>Interpretable?</th>
<th>Model</th>
<th>Spearman’s (\rho)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-interpretable</td>
<td>GloVe</td>
<td>0.426</td>
</tr>
<tr>
<td></td>
<td>CBOW</td>
<td>0.43</td>
</tr>
<tr>
<td></td>
<td>skip-gram</td>
<td>0.462</td>
</tr>
<tr>
<td>Interpretable</td>
<td>BOW</td>
<td>0.423</td>
</tr>
<tr>
<td></td>
<td>NNSE</td>
<td>0.455</td>
</tr>
<tr>
<td></td>
<td>SP(+)</td>
<td>0.502</td>
</tr>
<tr>
<td>Joint</td>
<td></td>
<td>0.528</td>
</tr>
<tr>
<td>Average Human Score</td>
<td></td>
<td>0.651</td>
</tr>
</tbody>
</table>

- \(\gamma \) determined using a development set
Reminder: word2vec’s Skip-Gram Model
(Mikolov et al., 2013)

Objective function:

$$\max \sum_{t=1}^{T} \sum_{-c \leq j \leq c, j \neq 0} \log p(w_{t+j}|w_t)$$
Integrating Symmetric Patterns into Existing NN Architectures?

A Deep Network Model + Symmetric Patterns
Integrating Symmetric Patterns into Existing NN Architectures?

A Deep Network Model + Symmetric Patterns

Pre-processing?
Enhance plain text with symmetric pattern information?

Acquiring Semantic Knowledge using Patterns
@ Roy Schwartz
Integrating Symmetric Patterns into Existing NN Architectures?

A Deep Network Model + Symmetric Patterns

Pre-processing?

Smarter Objective Function?

\[\max \sum p(c/w) + \text{constraint} \]
Integrating Symmetric Patterns into Existing NN Architectures?

A Deep Network Model + Symmetric Patterns

Pre-processing? Smarter Objective Function?
Summary

• Patterns are useful for extracting semantic information

• Symmetric patterns are as useful (actually more useful) as state-of-the-art word embeddings in modeling word similarity
 – 4–7.9 points gap

• Patterns can capture relations that word embeddings cannot
 – Antonymy

• SPs can be combined along with state-of-the-art embeddings to create an even more accurate representation
 – 6.6 points higher than state-of-the-art
roys02@cs.huji.ac.il
http://www.cs.huji.ac.il/~roys02/