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Overview

* NLP

— Problems and open questions
— Main approaches

* Lexico-syntactic Patterns

e Latest Results

— Interpretable Word Embeddings Using Patterns Features (Schwartz,
Reichart and Rappoport, under review)
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NLP is Hard

Ambiguity

Paraphrasing

Complex structures
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Ambiguity
Complex structures

Noise
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* High Level (Applications) * Low Level
— Search — Syntactic
— Question Answering * Parsing
— Machine Translation * Part-of-speech Tagging

— Summarization
— Sentiment Analysis
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NLP Tasks

* High Level (Applications) * Low Level
— Search — Syntactic
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Machine Translation

Part-of-speech Tagging

Summarization — Semantic
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 Compute the probability for every sequence of words

— Required by virtually every high level task (machine translation,
guestions answering, summarization, speech recognition, etc.)
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— Required by virtually every high level task (machine translation,
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Language Model

Compute the probability for every sequence of words

— Required by virtually every high level task (machine translation,
guestions answering, summarization, speech recognition, etc.)

Impossible to compute (exponentially large number of
sequences)

A common solution: Markov independence assumption
— Formally: compute p(w;| w, , ..., w;
— n usually equals 3 (trigram models)
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Neuro-probabilistic Language Models

e Address sparsity by building a (dense) vector word
representation (aka word embeddings) - Vidog
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Neuro-probabilistic Language Models

e Address sparsity by building a (dense) vector word

representation (aka word embeddings) - Vidog

0

0.5
0.76
-0.12

— Replace p(w;| w4, ..., w; ) with p(w;| V., ..., V.))

-N

e Use deep neural networks to train language models 0.76
— Bengio, 2003; Collobert, 2008 & 2011, word2vec (Mikolov 8
2013{a,b,c}) 0.51
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Neuro-probabilistic Language Models

e Address sparsity by building a (dense) vector word

representation (aka word embeddings) deog S
— Replace p(w;| w4, ..., w._ ) with p(w:| V., ..., V...)) 85
0.76
. -0.12
* Use deep neural networks to train language models 0.76
— Bengio, 2003; Collobert, 2008 & 2011, word2vec (Mikolov 3
2013{a,b,c}) -0.51
\ y

e Surprisingly, the word representations turned out to
be quite successful on their own
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— The idea: use words as features, ignoring words order
— General principle in computing word embeddings



Bag of Words Models

* Main type of feature
— Used in various NLP tasks
— The idea: use words as features, ignoring words order

— General principle in computing word embeddings
... tokens to date, friend lists and recent ...
... by my dear friend and companion, Fritz von ...
... even have a friend who never fails ...
... by my worthy friend Doctor Haygarth of ...
... and as a friend pointed out to ...
.. partner, in-laws, relatives or friends speak a different ...
... petition to a friend Go to the ...
... otherwise, to a friend or family member ...
...images from my friend Rory though - ...

... great, and a friend as well as a colleague, who, ...
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Bag of Words Models

* Main type of feature

— Used in various NLP tasks

— The idea: use words as features, ignoring words order

— General principle in co

mputing word embeddings

... tokens toldate} friend lists and recent ...

by my|dear|friend and|companion, Fritz von ...

... even have a friend who neverifails |...

... by my|worthy|friend|Doctor|Haygarth of ...

...and as a friend[pointed out|to ...

. partner||in-laws|

relatives|or friends speak a different ...

...|petition to a friend Go to the ...

... otherwise, to a friend or family"member

.. images|from my frienc[ Rory|though - ...

.Jgreat)and a friend as well as ajcolleague

Acquiring Semantic Knowledge using Patterns

@ Roy Schwartz

who, ...



wordZ2vec’s Skip-Gram Model
Mikolov et al., 2013

 Adeep learning method designed to learn an NLM



wordZ2vec’s Skip-Gram Model
Mikolov et al., 2013

 Adeep learning method designed to learn an NLM

* For each word w in the vocabulary V, learn both a “target-
embedding” v,, and and a “context-embedding” v,

— p(c|w) is computed using soft-max:

Ve Vi

P(elW) = <

w'eV
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wordZ2vec’s Skip-Gram Model
Mikolov et al., 2013

 Adeep learning method designed to learn an NLM

* Foreach word w in the vocabulary V, learn both a “target-
embedding” v,, and and a “context-embedding” v,
— p(c|w) is computed using soft-max:

Ve Vi

p(el W)= <

w'eV

* For each training sentence, treat each word in turn as a target
word

— Sample (word,context) pairs from a window of nearby words
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wordZ2vec’s Skip-Gram Model (2)

INPUT PROJECTION  OUTPUT

w(t-2)
r
/
/
/
/
/
r
/S

wi(t-1)

w(t)

Mikolov et al., 2013

Obijective function:

-
max Z Z log p(w4;|wy)

(=1 —c<j<c,j#0

Algorithm:
Stochastic gradient descent
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Word Embeddings Applications

Information Retrieval
Document Classification
Question Answering
Named Entity Recognition
Parsing



Word Embeddings (Cool!) Properties

(accurate) Word similarity Vaog o

car
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Word Embeddings (Cool!) Properties

e (accurate) Word similarity

 Word analogy

WOMAN

MAN /
UNCLE
QUEEN

AUNT

KING

(Mikolov et al., 2013)
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Word Embeddings Limitations

* Resulting vectors are highly uninterpretable
— Sequences of several hundred numbers
— Not clear what each number represents



Word Embeddings Limitations

Resulting vectors are highly uninterpretable
— Sequences of several hundred numbers

— Not clear what each number represents

Restricted to a limited set of relations
— Similarity/Relatedness, some analogies

— Other relations are not supported: hyponymy (animal = dog),
antonymy (big/tall), etc.
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Lexico-syntactic Patterns
Hearst, 1992

e Patterns that contain words and wildcards

— “Xis a country”, “X such as Y, etc.



Lexico-syntactic Patterns
Hearst, 1992

Patterns that contain words and wildcards

) (L

— “Xis a country”, “X such as

7)

| etc.

Patterns potentially capture the context in which a word
participates

Acquiring Semantic Knowledge using Patterns
@ Roy Schwartz

14



Lexico-syntactic Patterns
Hearst, 1992

Patterns that contain words and wildcards

1)

, etc.

V(]

— “Xis a country”, “X such as

Patterns potentially capture the context in which a word
participates

For example:

— A dog participates in patterns (contexts) such as:
— “Xbarks”, “X has a tail”, “X and cats”, ...
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Pattern Applications

* Acquiring the semantics of relationships between words

— Discovering hyponymy (animal = cat) (Hearst, 1992)
— Discovering meronymy (cat = tail) (Berland & Charniak, 1999)
— Discovering antonymy (big / small) (Lin, 2003)

* Word clustering and classification
— Davidov & Rappoport, 2006; Schwartz, Reichart & Rappoport, 2014

* Sentence Level Applications
— Sarcasm Detection (Tsur, Davidov & Rappoport, 2010)
— Sentiment Analysis (Davidov, Tsur, & Rappoport, 2010)
— Authorship Attribution (Schwartz et al., 2013)



Examples of Patterns

Extracting antonymy (opposite) relations
— “either X or Y’

— John is either tall or short
— either stay or come with us
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Examples of Patterns

Extracting antonymy (opposite) relations

)

— “either X or

— John is either or
— either or with us

Extracting hyponymy (is-a) relations
— “XsuchasY’

— Cut the stems of boxed flowers such as roses
— lam responsible for preparing a range of fruits such as apples
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Word Similarity via Patterns

* Some patterns are useful for identifying words that are
similar*

— mouse / rat, shirt / sweater, etc.

+** This is something that word embeddings are generally good at



Word Similarity via Patterns

 Some patterns are useful for identifying words that are
similar*

— mouse / rat, shirt / sweater, etc.

* These patterns are symmetric
— Contain exactly two wildcards (X,Y)

— Words w;,w; that co-occur in these patterns can come in both forms
(X=w;, Y=w;) and (X=w,, Y=w,)

** This is something that word embeddings are generally good at
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Symmetric Patterns (SPs)

XandyY

— cats and dogs , dogs and cats
— France and England, England and France

Xas wellasY
— friends as well as colleagues, colleagues as well as friends
— apples and oranges , oranges and apples
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Automatically Extracted Symmetric Patterns
The (Davidov and Rappoport, 2006) Algorithm

 Agraph-based algorithm
— Input: a corpus of plain text
— OQutput: a set of symmetric patterns



Automatically Extracted Symmetric Patterns
The (Davidov and Rappoport, 2006) Algorithm

* Agraph-based algorithm
— Input: a corpus of plain text

— Output: a set of symmetric patterns

 The idea: search for patterns with interchangeable word pairs
— For each pattern candidate, compute symmetry measure (M)
— Select the N patterns with the highest M values
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Automatically Extracted Symmetric Patterns (2)
The (Davidov and Rappoport, 2006) Algorithm

* The M measure counts the proportion of pattern instances
that appear in both directions (“cat and dog” + “dog and cat”)

* High M value = A symmetric pattern



Dog

DRO6 Example
XandY

. Househ/
nd hoUS ouse and
dog @ computer

Cat
Q
do
9 anqg Cat Cat %
Cat and ra¢
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DRO6 Example
XandY

Computer

. Hous%/)
nd hoUS ouse and
dog @ computer

C

e
M

and cq;

Symmetric edges
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Dog

DRO6 Example
XandY

Asymmetric edges

. Hous%/
nd hoUS ouse and
dog @ computer

Cat ang dOg
M
n
9 cat Cat

Symmetric edges
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DRO6 Example
XandY

Asymmetric edges

. Hous%/
nd hoUS ouse and
dog @ computer

Cat ang dOg
M
n
9 cat Cat

Dog

M =#symmetric_edges
#all _edges

Symmetric edges
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So Far

 Word embeddings are great
— Useful for down stream applications
— Have cool properties (similarity, word analogies)



So Far

* Word embeddings are great
— Useful for down stream applications
— Have cool properties (similarity, word analogies)

* But not perfect
— Uninterpretable
— Unable to recognize various relations
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Interpretable Word Embeddings Using
Pattern Features

Roy Schwartz, Roi Reichart and Ari Rappoport

(Under Revision)




Outline

Learn interpretable and high quality word embeddings
— Substantially outperform state-of-the-art word2vec embeddings

Show the benefits of interpretability

— Use our embeddings to assign dissimilar vectors to antonym pairs
(big/small)

Combine our embeddings with state-of-the-art embeddings
to get improved expressive power



Symmetric Patterns to Word Similarity

* |nput:alarge corpus C



Symmetric Patterns to Word Similarity

e |nput:alarge corpus C

e Extract a set of SPs P using the DRO6 algorithm

— “Aand¥Y”, “XorY”, “Kand the Y”, “from X to Y”, “X or the Y”, “X as well as
Y” “Kora Y’ X rather than Y”, “X nor Y”, “X and one Y”, “either X or Y”
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Symmetric Patterns to Word Similarity

* Input:alarge corpus C

e Extract a set of SPs P using the DRO6 algorithm

— “Aand¥Y”, “XKorY”, “Kand the Y”, “from Xto Y”, “Xor the Y”, “X as well as
7 “KoraY”“Xrather thanY”, “X nor Y”, “X and one Y”, “either X or Y”

* Traverse C, extract all instances of all p in P
— cats and dogs
— House and the rooms
— from France to England
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Symmetric Patterns to Word Similarity (2)

* Foreach word w in the lexicon, build a count vector (V,,) of all
other words that co-occur with w in SPs



Symmetric Patterns to Word Similarity (2)

* Foreach word w in the lexicon, build a count vector (V) of all
other words that co-occur with w in SPs

e QOrange  China
1. ...apples and oranges ... 1. ... Japan or China ...
2. ...oranges as well as grapes 2. ... China rather than Korea

K. ... neither banana nor orange ~ M. ... Vietham and China ...
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Symmetric Patterns to Word Similarity (3)

 Compute the Positive Pointwise Mutual Information (PPMI)
between each pair of words

PMI(WI,WJ)—Iog[ P(W;, ;) J

p(w;) p(w;)

PMI(w;,w;)<0:0

PPMI (w,,w.) = _
(Wi, w;) {othermse:PMl(wi,wj)



The Result: Interpretable Word Embeddings
based on Symmetric Patterns

PPMI(dog,house)
PPMI(dog,mouse)
PPMI(dog,zebra)
PPMI(dog,wine)
PPMI(dog,cat)
PPMI(dog,dolphin)
PPMI(dog,bottle)
PPMI(dog,pen)

VsP

dog

\ Y,
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VsP

The Result: Interpretable Word Embeddings
based on Symmetric Patterns

dog

PPMI(dog,house)
PPMI(dog,mouse)
PPMI(dog,zebra)
PPMI(dog,wine)
PPMI(dog,cat)
PPMI(dog,dolphin)
PPMI(dog,bottle)
PPMI(dog,pen)

\ Y,

\VSP_ | = ~500K
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Smoothing

* For each word w, VN, denotes the top N vectors with the
smallest cosine distance to V°°

V" =V o )y

N
veV,,

 Using N=50: E (/nonzero(V°F' )| )= ~8K

/

** aand N are tuned using a development set



Antonyms

big / small
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Antonyms

big / small

 Antonyms appear in similar contexts
* HereisaXcar
* Iliveina X house
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Antonyms

big / small

* Antonyms appear in similar contexts
* Hereisa Xcar
* Iliveina X house

=> In typical word embeddings, cos(V,, , V;,.;) is high
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Antonyms

big / small

 Some symmetric patterns are indicative of antonymy*

— “either X or Y” (either big or small), “from X to Y” (from poverty to
richness)

* Lin et al. (2003)
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Antonyms

* Avariant of our model that assigns dissimilar vectors to
antonym pairs



Antonyms

* Avariant of our model that assigns dissimilar vectors to
antonym pairs

* For each word w, compute V2" similarly to V>, but using
the set of antonym patterns

VAP' :VSP _ﬂ'VAP

w

¢ B is tuned using a development set
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Experiments

* Word similarity task

Experiments with the SimLex999 dataset (Hill et al., 2014)

999 word pairs, each assigned a similarity score by human annotators
F modtets (Wy W) = COS(V<modeI>Wi’V<modeI>Wj)
Evaluation results is the Spearman’s p score between model and human judgments
Numbers are average scores of 10 folds of 25% (dev) / 75 (test) partitions
Baselines: 2 interpretable baselines, 3 state-of-the-art, non-interpretable baselines

Interpretable? Model Spearman’s p
GloVe 0.426
Non-interpretable CBOW 0.43
skip-gram 0.462
BOW 0.423
Interpretable NNSE 0.455
Spt) 0.502
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Antonyms

: . SP ,

Word Pair AN | AN SG

new - old 1 6 6
narrow - wide 1 7 8
necessary - unnecessary 2 2 Y
bottom - top 3 8 10
absence - presence 4 7 9
receive - send I 9 8
fail - succeed 1 8 6
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Joint Model

fjoint(Wi/ Wj) =y'f5P(Wi/ Wj) + (1 - V) 'fskip-gram (Wi/ Wj)

Interpretable? Model Spearman’s p
GloVe 0.426
Non-interpretable CBOW 0.43
skip-gram 0.462
BOW 0.423
Interpretable NNSE 0.455
SpPt) 0.502
Joint 0.528
Average Human Score 0.651

sy determined using a development set
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Joint Model

Fioint Wy W) =V-fsp(W, W) + (1- V) -Fskip-gram(Ws W))

Interpretable? Model Spearman’s p
GloVe 0.426
Non-interpretable CBOW 0.43
skip-gram 0.462
BOW 0.423
Interpretable NNSE 0.455
SpPt) 0.502
Joint 0.528
Average Human Score 0.651

sy determined using a development set
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Reminder: word2vec’s Skip-Gram Model
(Mikolov et al., 2013)

Obijective function:

INPUT PROJECTION  OUTPUT

T
Dw{t-z) max E E log p(w (i 'LL-‘f_}

(=1 —c<j<c,j#0

wi(t-1)

w(t)

w(t+1)

h
N
\
\
h
A
N,
\
e
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Integrating Symmetric Patterns into
Existing NN Architectures?

A Deep
Network Model

Symmetric
Patterns



Integrating Symmetric Patterns into
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A Deep
Network Model
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Patterns

Pre-processing?

Enhance plain text with symmetric pattern information?



Integrating Symmetric Patterns into
Existing NN Architectures?

A Deep
Network Model

Symmetric
Patterns

Pre-processing?

Smarter Objective Function?

max 2 p(c|w) + constraint
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Integrating Symmetric Patterns into
Existing NN Architectures?

A Deep
Network Model

Symmetric
Patterns

Pre-processing? Smarter Objective Function?
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Summary

Patterns are useful for extracting semantic information

Symmetric patterns are as useful (actually more useful) as
state-of-the-art word embeddings in modeling word similarity

— 4-7.9 points gap

Patterns can capture relations that word embeddings cannot
— Antonymy

SPs can be combined along with state-of-the-art embeddings
to create an even more accurate representation
— 6.6 points higher than state-of-the-art



‘

roys02@cs.huji.ac.il
http://www.cs.huji.ac.il/~roys02/
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