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Abstract

Natural Language Processing (NLP) is a field of research that aims, on the
one hand, to give computational answers to linguistic questions, and on the
other hand, develop applications for language oriented tasks, such as machine
translation, text summarization and question answering. These two goals
share a fundamental question, namely how to represent semantics ; e.g., what
is the meaning of the word dog, of expressions such as Red Herring or kick the
bucket, or even more complex language structures. This question is linguistic
(or even cognitive) in nature, while having direct empirical implications.
Inside semantics, one of the most important subfields is lexical semantics,
which studies the meaning or language utterances such as words or sub-
words.

The most prominent method for representing the semantics of language
utterances is constructing feature vectors. These methods, also called vector
space models, date back to the early 1970s. Until recent years, vector space
models built co-occurrence matrices, such that each word is directly repre-
sented by the other words with which it co-occurs. In the last few years,
novel approaches, often referred to as word embeddings, were developed for
this task. These models were by large based on neural network algorithms,
and were able to obtain substantial improvements on various semantic tasks.
This success has made word embeddings a very popular tool, and created a
sense that these models represent the complete semantics of a given word.

In this dissertation, I will show that despite their tremendous success,
word embeddings suffer from several limitations. First, I will show that
while state-of-the-art word embeddings are exceptionally well at capturing
word association (e.g., “cup” is associated with “coffee”), they are far worse
at capturing word similarity (e.g., “cup” is similar to “glass”). Second, I will
demonstrate that they cannot distinguish between similar (“good”/“great”)
and opposite words (“good”/“bad”). Third, I will show that while word
embeddings are successful at capturing the semantics of nouns (e.g., “house”,
“dog”), they are far less successful in capturing verb semantics (e.g., “run”,
“walk”).

In order to address these problems, I will present a set of pattern-based
solutions. Lexico-syntactic patterns (e.g., “X such as Y”, “X is a Y”) are
one of the most effective alternatives to word embeddings in the task of
semantic representation. They have been shown useful for capturing a wide
range of semantic relations, including synonymy, hyponymy (is-a), antonymy
(opposite-of), and many other relations. I will show that integrating patterns
into word embeddings can greatly alleviate their problems.

I will start by demonstrating that pattern based methods can be superior
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to word embeddings on semantic tasks. I will present a variant of the k-
Nearest Neighbors algorithm, which uses symmetric patterns (e.g., “X and
Y”, “X or Y”) to capture a range of semantic properties (e.g., animacy,
edibility, etc.), and obtains substantial improvements over state-of-the-art
embeddings.

I will continue by presenting two word embedding models that are based
on symmetric patterns, and are able to overcome the limitations of word
embeddings. The first is a count based model that substantially outperforms
six state-of-the-art embeddings on a word similarity task. The second is a
pattern-based variant of the omnipresent word2vec skipgram model (Mikolov
et al., 2013b), which outperforms it by more than 15% on a verb similarity
task, while training in only a fraction of the original skipgram model training
time.

For completeness, I will present another pattern-based system, which
shows that patterns serve as valuable features for other tasks as well. I will
present a pattern-based authorship attribution system, which obtains state-
of-the-art results on the task of recognizing the author of a single tweet.

To conclude, the contribution of this dissertation lies in two aspects.
First, it sheds light on the limitations (and strengths) of state-of-the-art word
embeddings, which have until recently been considered almost omnipotent.
Second, it demonstrates the power of patterns in overcoming some of these
limitations, both by integrating pattern features into existing models and by
developing novel, pattern-based models.
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Chapter 1

Introduction

Natural Language Processing (NLP) is a field of research that focuses on
the automatic representation and understanding of text. Research in NLP
aims, on the one hand, to improve linguistic and cognitive understanding of
language, and on the other hand, to develop natural language applications
such as machine translation, question answering and textual search.

Research in NLP can be very broadly divided into two major fields:
syntax and semantics. Syntactic NLP tasks focus on the induction of the
syntactic structure of natural language sentences, such as part-of-speech
(PoS) labels (Toutanova et al., 2003; Abend et al., 2010; Christodoulopoulos
et al., 2010), phrase structure trees (Collins, 2003; Klein and Manning, 2004;
Seginer, 2007) and dependency trees (Nivre and Hall, 2005; McDonald et al.,
2005; Kübler et al., 2009).

Semantic tasks focus on the meaning of language utterances, and offer a
wider range of tasks, starting from shallow semantics such as distributional
semantics (Harris, 1954), through sentence levels semantic tasks such as se-
mantic role labeling (Palmer et al., 2010) and semantic parsing (Zelle and
Mooney, 1996; Zettlemoyer and Collins, 2005), up to tasks that require higher
level understanding of text, such as statistical machine translation (Koehn,
2009) and text summarization (Mani and Maybury, 1999). This dissertation
will focus on one of the most dominant NLP subfields nowadays – lexical
semantics.

Research in lexical semantics focuses on extracting semantic features of
lexical units such as words or sub-words. This subfield offers a wide range
of NLP tasks, including measuring the degree of association or similarity
between words and extracting semantic relations between words (e.g., syn-
onyms, antonyms). The two main approaches to lexical semantics in NLP
are distributional models (a.k.a. vector space models or word embeddings)
and lexico-syntactic patterns. In this dissertation I will show that despite
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their increased popularity in recent years, distributional models suffer from
serious shortcomings. I will then show that patterns can provide a better
solution to semantic tasks, and that a combination of the two approaches
can overcome many of these shortcomings.

Vector space models represent the meaning of words as vectors of real
numbers. These vectors are the result of an algorithmic operation on the co-
occurrence counts of a word and its neighboring words in natural language
corpora. The theoretical foundation of these models is the distributional
semantics hypothesis (Harris, 1954), which states that words that occur in
similar contexts tend to have similar meanings. An important note here is
that the term context is often interpreted as “bag-of-words context”, i.e., the
contexts of a word are the words surrounding it, regardless of the syntactic
and/or semantic relation between them. While the earliest vector space
models date back to the early 1970’s (Salton, 1971), this field has remained
active for several decades.

In the last few years distributional models have become extremely popu-
lar, with the introduction of novel neural-network based distributional models
(a.k.a. word embeddings), such as C&W (Collobert et al., 2011), word2vec
(Mikolov et al., 2013b) and GloVe (Pennington et al., 2014). These models
obtained superb results on many lexical semantic tasks, including word as-
sociation, word analogy and synonym detection (Baroni et al., 2014).1 To
quote: “It seems possible to us that all of the semantics of human language
might one day be captured in some kind of Vector Space Model” (Turney and
Pantel, 2010).

Despite their tremendous success and popularity, word embeddings are
not flawless. In this dissertation, I will shed light on some of their limita-
tions. First, I will show that word embeddings do not capture word similarity
(“car” is similar to “train”), but word association (e.g., “car” and “wheal”
are associated, Chapter 3). Second, I will demonstrate that state-of-the-art
word embeddings are unable to distinguish between similar words (“good”
and “great”) and opposite words (“good” and “bad”, Chapter 3). Third, I
will show that there is a large discrepancy between their ability to capture
noun similarity (e.g., “tiger” and “leopard”) and their ability to capture verb
similarity (“walk” and “run”, Chapters 3,4), which is substantially inferior.

I will present solutions to these problems. These solutions are based
on lexico-syntactic patterns. Patterns are sequences of words and wild-
cards (e.g., “such X as Y”). Ever since their introduction in the early 1990’s
(Hearst, 1992), patterns have been shown useful for capturing various types
of word relations, such as hypernymy (“cat”/“animal”, Hearst (1992); Snow

1Although see (Levy et al., 2015a) for a disclaimer.
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et al. (2004)), antonymy (“good”/“bad”, Lin et al. (2003)) and synonymy
(Turney, 2008a). In this dissertation, I will show that patterns can be used to
overcome many of the limitation of state-of-the-art word embeddings, either
by developing new models (Chapter 2) or by integrating them in existing
word embedding models (Chapters 3,4).

In Chapter 2 I will start by showing that patterns can serve as better
features compared to leading word embeddings in semantic tasks. I will
present a novel algorithm based on the k-Nearest-Neighbors algorithm, and
show that applying it with symmetric patterns features leads to substantial
improvements over state-of-the-art word embeddings on the task of minimally
supervised word classification.

I will continue by presenting two word embedding models that integrate
pattern contexts in order to overcome their limitations. In Chapter 3 I will
present a vector space model that replaces bag-of-word contexts with sym-
metric patterns (“X and Y”). I will show that this model (a) captures word
similarity and not association, (b) is able to distinguish between similar and
opposite words, and (c) preforms exceptionally well on verb similarity.

In Chapter 4 I will show that integrating symmetric patterns into the om-
nipresent word2vec skipgram with negative sampling model (Mikolov et al.,
2013b) improves its verb similarity performance by 15%, and also results in
a model that is dramatically faster to train.

In Chapter 5 I will demonstrate that patterns are also useful in other do-
mains, by presenting a pattern-based authorship attribution system for very
short texts (tweets). My experiments show that by incorporating pattern
features, this system is able to reach state-of-the-art performance.

Background

Lexical Semantics

Lexical Semantics is a subfield in linguistics that studies the meaning of
lexical units (mostly words, but also multiword expressions or sub-words).
The goal of this research is to characterize words in terms of their features
(e.g., “dog” is an animate noun, “water” is a mass noun), and their relation
to other words. Such relations include, among others, synonymy (“big” /
“large”), antonymy (“good” / “bad”), hypernymy (“animal” / “dog”) and
meronymy (“wheel” / “car”).

In NLP, several approaches to lexical semantics have been proposed. The
first approach is constructing lexicons manually (or semi-automatically). The
most notable example is WordNet (Miller, 1995), which is a large lexical re-
source for English which focuses on taxonomic relations. Other resources
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include EuroWordNet (Vossen, 1998), which extends WordNet to other Eu-
ropean languages, and other lexicons that focus on verb relations, such as
COMLEX (Grishman et al., 1994) and VerbNet (Schuler, 2005). Several on-
tologies, such as Yago (Suchanek et al., 2007) and BabelNet (Navigli and
Ponzetto, 2012), were assembled by automatically harvesting resources such
as WordNet and Wikipedia

Other approaches to lexical semantics include compiling vector represen-
tation of words (a.k.a. vector space models or more recently, word embeddings)
and extracting lexico-syntactic patterns. Below is a short background to both
approaches.

Vector Space Models

Vector space models are computational models for representing words as vec-
tors of real numbers. Research on vector space models dates back to the early
1970’s (Salton, 1971). Until recent years, vector space models represented
each word w as a vector in which each coordinate represents the co-occurrence
of w and another word w′. Importantly, the great majority of vector space
models consider very little information on the syntactic and semantic rela-
tions between w and w′. Instead, a bag-of-words approach is taken. The
resulting vectors are often post-processed by weighting techniques such as
Positive Pointwise Mutual Information (PPMI) normalization and dimen-
sionality reduction methods such as Singular Value Decomposition (SVD).
For recent surveys, see (Turney and Pantel, 2010; Clark, 2012; Erk, 2012).

Evaluation of Vector Space Models There are several ways to evalu-
ate the quality of vector space models. The most common approach is to
generate pairs of words, and have humans annotate their degree of similarity
or association. Several efforts have been made along this line over the years,
including RG-65 (Rubenstein and Goodenough, 1965), MC-30 (Miller and
Charles, 1991), WordSim353 (Finkelstein et al., 2001), MEN (Bruni et al.,
2014) and SimLex999 (Hill et al., 2015).2 The evaluation procedure includes
comparing the human scores with the cosine similarity scores between each
pair of vectors, and then computing the correlation (usually in terms of
Spearman’s ρ) between the relative rankings.

Other types of evaluation were also proposed. In the TOEFL task (Fre-
itag et al., 2005), the system is presented with one target word and four
possibles choices, one of which is its synonym. The evaluation procedure
checks whether the word with the highest cosine similarity is indeed the syn-

2For a comprehensive list see: wordvectors.org/
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onym. Other tasks include treating the vector elements as features for word
classification or clustering tasks (Almuhareb, 2006; Baroni et al., 2008).

In addition to intrinsic evaluation, vector space models are also evaluated
in extrinsic tasks (e.g., Named-Entity Recognition (Turian et al., 2010)),
where they can either replace or be applied on top of lexical features. More-
over, many neural network models use intermediate vector representation,
e.g., the Stanford Neural Network Dependency parser (Chen and Manning,
2014). Different vector space models can thus be evaluated in terms of how
much they benefit a given system.

Interestingly, recent works have pointed out to several methodological
problems in the evaluation setup of vector space models (Faruqui et al.,
2016), such as a low correlation between extrinsic and intrinsic evaluation
(Schnabel et al., 2015; Tsvetkov et al., 2015; Melamud et al., 2016). The
large number of evaluation measures, as well as their inconsistency, make the
field of vector space evaluation an open research question.

Word Embeddings Recently, a line of work presented Neural Network
(NN) algorithms for vector space modeling (Bengio et al., 2003; Collobert
and Weston, 2008; Mnih and Hinton, 2009; Collobert et al., 2011; Dhillon
et al., 2011; Mikolov et al., 2013b; Mnih and Kavukcuoglu, 2013; Lebret and
Collobert, 2014; Pennington et al., 2014). These models went by the name
word embeddings. Like earlier works, these models also follow the bag-of-
words approach. However, they encode this information into their objective,
often a language model, rather than directly into the features.

Word embeddings have shown to be successful in various semantic tasks,
such as word association, synonym detection and word clustering (Baroni
et al., 2014). This trend of works also introduced a new evaluation task –
word analogy test (Mikolov et al., 2013c). In this test, the embeddings are
used to compute analogies such as “man is to woman like king is to ?” (queen).
Mikolov et al. (2013c) presented the word2vec skip-gram with negative sam-
pling model, and showed that the result of the vector computation of vking-
vman+vwoman is a vector that is most similar to vqueen.

Other than capturing semantic information, word embeddings have also
shown useful for downstream tasks such as Named-Entity recognition (Turian
et al., 2010), semantic role labeling (Collobert et al., 2011), sentiment analysis
(Socher et al., 2013), machine translation (Devlin et al., 2014) and depen-
dency parsing (Chen and Manning, 2014). This empirical success has made
word embeddings a very popular field of research in the last few years.
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Model Nouns Verbs
GloVe 0.377 0.163
BoW 0.451 0.276

CBOW 0.48 0.252
skip-gram 0.501 0.307

Table 1.1:
Spearman’s ρ performance of four leading word embedding models on noun
and verb similarity tasks. Models: Glove (Pennington et al., 2014), BoW –
bag-of-words co-occurrence model with PPMI weighting, CBOW – word2vec
CBOW (Mikolov et al., 2013a), skip-gram – word2vec skipgram (Mikolov
et al., 2013b). All models perform substantially better on nouns than on
verbs.

Limitations of Word Embeddings Despite their tremendous success in
many semantic tasks and downstream applications, word embeddings are
not perfect. In Chapters 3,4 we highlight a few problems with state-of-the-
art embeddings. First, while bag-of-words word embeddings capture word
association to a very high degree, they fail to distinguish between associated
and similar words. Consider the pair of words “cow” and “milk”. These
two words co-occur quite frequently, and thus words that co-occur with one
of them, also tend to co-occur with the other. Consequently, a vector space
model constructed with bag-of-words features will assign similar vectors to
this pair of words. Indeed, the word2vec skip-gram embeddings (Mikolov
et al., 2013b) cosine similarity score between these words is relatively high
(0.61). Similarly, the similarity score assigned by this model to the word pair
“computer” and “software” is 0.68.

Second, state-of-the-art word embeddings fail to distinguish between sim-
ilar and opposite words. This is because much like similar words, opposite
words (antonyms) also tend to occur in the same context, and thus their
word embeddings are often similar. For example, the skip-gram score of the
(accept,reject) pair is 0.73, and the score of (long,short) is 0.71.

Third, there is a large discrepancy between the performance of state-of-
the art embeddings on noun related tasks and verb related tasks. Table 1.1
shows that performance of four leading bag-of-words embeddings on the noun
and verb portions of the SimLex999 word similarity dataset (Hill et al., 2015).
The table shows that the performance of all models decreases by 17.5%-22.6%
when shifted from nouns to verbs.

Finally, a few recent papers examined the limitations of word embed-
dings in representing different types of semantic information. Levy et al.
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(2015b) showed that word embeddings do not capture semantic relations
such as hyponymy and entailment. In (Rubinstein et al., 2015), we showed
that while state-of-the-art embeddings are successful at capturing taxonomic
information (e.g., apple is a fruit), they are much less successful in capturing
attributive properties (elephants are big).

Solutions to the Limitations of Word Embeddings A few works tack-
led some of the problems mentioned above by injecting lexical knowledge,
such as dictionary, ontology or thesaurus information, into the embeddings.
This knowledge can be injected into the objective function (Kiela et al., 2015;
Pham et al., 2015; Liu et al., 2015), or as a post-processing step (Faruqui
et al., 2015; Mrkšić et al., 2016). This external knowledge enabled the result-
ing embeddings to differentiate between related and similar pairs of words,
and in some cases also between similar and opposite word pairs.

A few works tackled these problems in a corpus-based method, with-
out using external knowledge resources. The main approach in these works
is to replace bag-of-words contexts with other context types, which consider
deeper relationships between linguistic items. A few works represented words
through their co-occurrence with other words in syntactic dependency rela-
tions (Lin, 1998; Padó and Lapata, 2007; Murphy et al., 2012; Levy and
Goldberg, 2014). Other works used other types of contexts, such as clus-
ters of lexico-syntactic patterns (Baroni et al., 2010; Bollegala et al., 2015).
Yatbaz et al. (2012) replaced bag-of-word contexts with substitute vectors,
which include the potential words that could replace the target word given
its neighboring words. The main benefit from these models is to build more
functional embeddings, in order to capture similarity rather than relatedness
(Levy and Goldberg, 2014).

In this dissertation, I present (Chapters 3,4) two word embedding models
based on symmetric patterns, and one model based on syntactic coordination,
and show that these models alleviate many of the problems discussed ear-
lier. Similarly to the other models that present alternatives to bag-of-words
contexts, these embedding models also capture word similarity rather than
relatedness. Nonetheless, symmetric pattern contexts have several advan-
tages compared to the solutions presented above. First, in contrast to using
dependency-based contexts, symmetric patterns are computed in a fully un-
supervised manner, and are thus applicable to any language. Second, the
proposed methods result in a particularly accurate representation of verbs,
as reflected by their state-of-the-art results on verb similarity – 20% improve-
ment over the second best baseline (Chapter 3). Third, a symmetric-pattern
based approach is dramatically faster to train. For instance, training the

7



word2vec skip-gram model (Mikolov et al., 2013c) with symmetric pattern
contexts takes only 2-3% of the time it takes to train the model on the same
corpus with bag-of-words or dependency contexts. Finally, other than cap-
turing similarity rather than relatedness, the method proposed in Chapter 3
is also able to distinguish between similar and opposite words. To the best
of my knowledge, this is the only corpus based word embedding model that
can make this distinction.

Lexico-Syntactic Patterns

A second approach to lexical semantics is lexico-syntactic patterns. Patterns
are sequences of words and wildcards (Hearst, 1992). Examples of patterns
include “X such as Y”, “X or Y” and “X is a Y”. When patterns are instan-
tiated in text, wildcards are replaced by words. For example, the pattern “X
is a Y ”, with the X and Y wildcards, can be instantiated in phrases like
“Goofy is a dog”.

Patterns were shown useful for capturing a wide range of semantic rela-
tions. Hearst (1992) used patterns like “X such as Y” and “such Y as X” to
extract hypernym/hyponym relations (animal/dog). Berland and Charniak
(1999) applied patterns such as “X of a Y” for the detection of the meronymy
(part-of) relation (building/basement). Lin et al. (2003) used the patterns
“from X to Y” and “either X or Y” to extract antonym relations (good/bad).
Symmetric patterns (e.g., “X and Y”) have been shown useful for capturing
word similarity (Widdows and Dorow, 2002; Davidov and Rappoport, 2006).

Patterns were also used in general tasks such as knowledge extraction
(Etzioni et al., 2005) and general word relations (Davidov and Rappoport,
2008a,b). In addition, they have successfully served as features for down-
stream tasks such as detection of sarcasm (Tsur et al., 2010), sentiment analy-
sis (Davidov et al., 2010), minimally supervised word classification (Schwartz
et al. (2014), Chapter 2) and authorship attribution (Schwartz et al. (2013),
Chapter 5).

Symmetric Patterns Symmetric patterns are a special type of patterns
that contain exactly two wildcards and that tend to be instantiated by wild-
card pairs such that each member of the pair can take the X or the Y po-
sition. For example, the symmetry of the pattern “X or Y ” is exemplified
by the semantically plausible expressions “cats or dogs” and “dogs or cats”.
In contrast, “X is a Y ” is asymmetric because pairs of words that co-occur
in one position (e.g., “Rihanna is a singer”), do not tend to co-occur in the
other position (“*singer is a Rihanna”).
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Previous works have shown that words that co-occur in symmetric pat-
terns tend to be semantically similar (Widdows and Dorow, 2002; Davidov
and Rappoport, 2006). In this dissertation I start (Chapter 2) by demonstrat-
ing that symmetric patterns can serve as better features than state-of-the-art
embeddings in lexical semantics tasks. I present a weakly supervised model
for semantic word classification. The model applies the iterative k-Nearest
Neighbors (I-k-NN) algorithm, a novel variant of the k-Nearest-Neighbors
algorithm, which is particularly suited for minimally supervised tasks. The
novel model uses symmetric pattern counts as edge weights, and requires
only a handful of training examples. In my experiments, with four different
semantic categories (e.g., edible nouns, animate nouns), this model obtains
an average improvement of 15% over two leading models. Moreover, the
presented I-k-NN algorithm also performs better than two state-of-the-art
minimally supervised classification algorithms.

I continue by showing that patterns can be integrated into word embed-
dings in order to overcome their limitations presented earlier. I present two
models that use symmetric patterns to generate embeddings that capture
word similarity rather than relatedness.

• The first work (Chapter 3) presents a co-occurrence model that replaces
bag-of-word counts with symmetric pattern counts. As words that
co-occur in symmetric patterns tend to be similar (and not simply
related, as in bag-of-words co-occurrence), the resulting vectors are
able to distinguish between similar and related pairs.

That work also presents negative weighting, a novel antonym detection
mechanism, which prevents the model from assigning similar vectors to
opposite words. This mechanism follows the work of (Lin et al., 2003),
who found that antonym pairs tend to co-occur in the antonym patterns
“from X to Y” and “either X or Y”. With this observation, I subtract
the antonym pattern counts from the symmetric pattern counts, and
thus the resulting model assigns similar vectors to similar words, and
different vectors to opposite words.

This model obtains state-of-the-art results on the SimLex999 word sim-
ilarity dataset (Hill et al., 2015), improving over six strong baselines by
5.5%-16.7%. Interestingly, the model performs exceptionally well on
the verb portion of SimLex999, obtaining 20.2%-40.5% improvement
over these models.

• The second work (Chapter 4) studies the effect of the context type on
the performance of word embeddings. In this chapter, I demonstrate
that replacing bag-of-word contexts with symmetric pattern contexts

9



in the omnipresent word2vec skipgram model (Mikolov et al., 2013b)
leads to up to 15% gain on a verb similarity task and up to a 9% gain
on adjective similarity. Moreover, replacing the contexts also results in
a much more compact model, which trains in only 3% of the training
time of the bag-of-words skip-gram model. Finally, I also show that the
symmetric patterns skip-gram variant performs better (although by a
smaller margin) than a model based on syntactic coordinations, which
are extracted using a supervised dependency parser. These findings
demonstrate the power of symmetric patterns in the context of verb
and adjective similarity.

Authorship Attribution of Short Texts

Authorship attribution is a multi-class classification task, where a system
is trained on (document,author) pairs. Traditionally, authorship attribution
systems have mainly been evaluated against long texts such as theater plays
(Mendenhall, 1887), essays (Yule, 1939; Mosteller and Wallace, 1964), bibli-
cal books (Mealand, 1995; Koppel et al., 2011a) and book chapters (Argamon
et al., 2007; Koppel et al., 2007). In the last decade or so, authorship attri-
bution works started to focus on web data such as emails (De Vel et al., 2001;
Koppel and Schler, 2003; Abbasi and Chen, 2008), web forum messages (Ab-
basi and Chen, 2005; Solorio et al., 2011), blogs (Koppel et al., 2006, 2011b)
and chat messages (Abbasi and Chen, 2008).

In recent years, a few works focused on very short text such as SMS mes-
sages (Mohan et al., 2010; Ishihara, 2011) and Twitter tweets (Frantzeskou
et al., 2007; Silva et al., 2011; Boutwell, 2011; Mikros and Perifanos, 2013).
In Chapter 5, I present a pattern-based authorship attribution system that
is specifically useful for very short texts. The system obtains state-of-the-art
results on the Twitter domain – a 6% improvement over previous methods.
Moreover, unlike previous works, which were limited to 200 authors at most,
in this work I also present experiments with a very large pool of authors
(up to 1,000 authors), showing that the system is able to reach reasonable
performance in this setup (more than 30% accuracy). Finally, I introduce
the concept of an author’s unique “signature”, and show that such signatures
are typical of many authors when writing very short texts.

Summary of Research Achievements

The goal of this dissertation is to examine different ways of extracting lexical
semantic knowledge. While word embeddings are considered a very effective
tool for this task, this dissertation presented several, rather basic aspects of

10



lexical semantics that they are currently unable to capture. These limitations
question the assumption that these models capture all (or even most) of
the semantic properties of words, and indicate that there is much room for
improving these tools. The second part of this dissertation showed that
lexico-syntactic patterns may serve as better features for lexical semantic
tasks compared to word embeddings. It also showed that integrating patterns
into existing embeddings alleviates many of the limitations of bag-of-words
embeddings. This dissertation is just a first step in addressing the wide range
of lexical semantic tasks. There is much room to investigate how patterns,
embeddings or their combination can improve performance on other tasks,
such as extraction of semantic relations.
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Abstract

Classifying nouns into semantic categories (e.g., animals, food) is an important line of research
in both cognitive science and natural language processing. We present a minimally supervised
model for noun classification, which uses symmetric patterns (e.g., “X and Y”) and an iterative
variant of the k-Nearest Neighbors algorithm. Unlike most previous works, we do not use a
predefined set of symmetric patterns, but extract them automatically from plain text, in an unsu-
pervised manner. We experiment with four semantic categories and show that symmetric patterns
constitute much better classification features compared to leading word embedding methods. We
further demonstrate that our simple k-Nearest Neighbors algorithm outperforms two state-of-
the-art label propagation alternatives for this task. In experiments, our model obtains 82%-94%
accuracy using as few as four labeled examples per category, emphasizing the effectiveness of
simple search and representation techniques for this task.

1 Introduction

The role of language is to express meaning. In the field of NLP, there has been an increasingly grow-
ing number of approaches that deal with semantics. Among these are vector space models (Turney and
Pantel, 2010; Baroni and Lenci, 2010), lexical acquisition (Hearst, 1992; Dorow et al., 2005; Davidov
and Rappoport, 2006), universal cognitive conceptual annotation (Abend and Rappoport, 2013) and au-
tomatic induction of feature representations (Collobert et al., 2011). In this paper, we utilize extremely
weak supervision to classify words into fundamental cognitive semantic categories.

There are several types of semantic categories expressed by languages, e.g., objects, actions, and
properties. We follow human development, acquiring coarse-grained categories and distinctions before
detailed ones (Mandler, 2004). Specifically, we focus on the major class of concrete “things” (Langacker,
2008, Ch. 4), roughly corresponding to nouns – the main participants in linguistic clauses – that are
universally present in the semantics of virtually all languages (Dixon, 2005).

Most works on noun classification to semantic categories require large amounts of human annotation
to build training corpora for supervised algorithms (Bowman and Chopra, 2012; Moore et al., 2013) or
rely on language-specific resources such as WordNet (Evans and Orǎsan, 2000; Orǎsan and Evans, 2007).
Such heavy supervision is labor intensive and makes these models domain and language dependent.

Our reasoning is that weak supervision is highly valuable for semantic categorization, as it can com-
pensate for the lack of input from the senses in text corpora. Our model therefore performs semantic
category classification using only a small number of labeled seed words per category. The experiments
we conduct show that such weak supervision is sufficient to construct a high quality classifier.

A key component of our model is the application of symmetric patterns. We define patterns to be
sequences of words and wildcards (e.g., “X is a dog”, “both X and Y”, etc.). Accordingly, symmet-
ric patterns are patterns that contain exactly two wildcards, where both wildcards are interchangeable.
Examples of symmetric patterns include “X and Y”, “X as well as Y” and “neither X nor Y”.

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Page numbers and proceedings footer
are added by the organisers. Licence details: http://creativecommons.org/licenses/by/4.0/.



Works that apply symmetric patterns in their model generally require expert knowledge in the form of a
pre-compiled set of patterns (Widdows and Dorow, 2002; Kozareva et al., 2008). In this work, we extract
symmetric patterns in an unsupervised manner using the (Davidov and Rappoport, 2006) algorithm. This
algorithm automatically extracts a set of symmetric patterns from plain text using simple statistics about
high and low frequency word co-occurrences. The unsupervised nature of our approach makes it domain
and language independent.

Our model addresses semantic classification in a transductive setup. It takes advantage of word sim-
ilarity scores that are computed based on symmetric pattern features, and propagates information from
concepts with known classes to the rest of the concepts. For this aim we apply an iterative variant of the
k-Nearest Neighbors algorithm (denoted with I-k-NN) to a graph in which vertices correspond to nouns
and word pairs are connected with edges based on their participation in symmetric patterns.

We experiment with a subset of 450 nouns from the CSLB dataset (Devereux et al., 2013), which were
annotated with semantic categories by thirty human subjects. From the set of semantic categories in this
dataset, we select categories that are both frequent and have a high inter-annotator agreement (Section 2).
This results in a set of four semantic categories – animacy, edibility, is a tool and is worn.

Our experiments show that our model performs very well even when only a small number of labeled
seed words are available. For example, on the task of binary classification with respect to a single
category, when using as few as four labeled seed words, classification accuracy reaches 82%-94%.

Furthermore, our model outperforms several strong baselines for this task. First, we compare our
model against a model that uses a deep neural network word embedding baseline (Collobert et al., 2011)
instead of our symmetric pattern based features, and applies the exact same I-k-NN algorithm. In recent
years, deep networks word embeddings obtained state-of-the-art results in several NLP tasks (Collobert
and Weston, 2008; Socher et al., 2013). However, in our task, features based on simple, intuitive and
easy to compute symmetric patterns, lead to substantially better performance (average improvement of
0.15 F1 points). Second, our model outperforms two baseline models that utilize the same symmetric
pattern classification features as in our model, but replace our simple I-k-NN algorithm with two leading
label propagation alternatives (the normalized graph cut (N-Cut) algorithm (Yu and Shi, 2003) and the
Modified Adsorption (MAD) algorithm (Talukdar and Crammer, 2009)). The average improvement over
these two baselines is 0.21 and 0.03 F1 points .

The rest of the paper is organized as follows. Section 2 describes our semantic classification task
and, particularly, the semantic classes that we aim to learn. Section 3 presents our method for automatic
symmetric patterns acquisition. Sections 4, 5 and 6 describe our model, experimental setup and results,
respectively. Related work is finally surveyed in Section 7.

2 Task Definition

The task we tackle in this paper is the classification of nouns into semantic categories. This section
defines the categories we address and the dataset we use.

Semantic Categorization of Concrete Nouns. We focus on concrete “things” (Langacker, 2008),
which correspond to noun categories. Nouns are interesting because they are the most basic lexical
semantic categories. Specifically, children acquire nouns before any other category (Clark, 2009). More-
over, noun categories are generally not subjective. For example, it is hard to argue that a dog is not
an animal, or that an apple is inedible, in most reasonable contexts. The context independent nature of
nouns makes them appropriate for a type level classification task, such as the one we tackle. In order to
provide a better description of the categories we aim to predict, we now turn to discuss the CSLB dataset,
with which we experiment.

Dataset. We experiment with the CSLB property norms dataset (Devereux et al., 2013). In order to
prepare this data set, thirty human subjects were presented with 638 concrete nouns and were asked to
write the categories associated with each concept. Table 1 presents the top five categories for the nouns
apple and horse.



Noun Categories
Apple is a fruit, does grow on trees, is green, is red, has pips seeds
Horse is ridden, is an animal, has four legs, has legs, has hooves

Table 1: Five most frequent semantic categories for the words apple and horse in the CSLB dataset.

Category Selection. The CSLB dataset consists of a total of 2725 semantic categories. We apply
a selection mechanism that provides us with a dataset in which (1) only noun categories (things) are
included; and (2) only semantic categories that are prominent across humans are considered. For this,
we apply the following filtering stages. First, since the vast majority of annotated categories are rare (for
example, 1691 categories are assigned to a single noun only), we set a minimum threshold of 35 nouns
per category (5% of the nouns). After removing highly infrequent categories, 28 are left. We then apply
an inter-annotator agreement criterion: for each semantic category c, we compute the average number
of human annotators that associated this category with a given noun, across the nouns annotated with c.
We select the category c only if the value of this statistic is higher than 10 subjects (1/3 of the subjects),
which results in a semantic category set of size 18. Finally, we discard categories, such as color and size,
that do not correspond to things. We are left with four noun semantic categories: animacy (animals),
edibility (food items), is a tool (tools), and is worn (clothes).

Interestingly, the resulting semantic categories can also be justified from a cognitive perspective. There
is a large body of work indicating that our categories relate to brain organization principles. For example,
Just et al. (2010) showed that food products and tools arouse different brain activation patterns. More-
over, a number of works showed that both animate objects and tools are represented in specific brain re-
gions. These works used neuroimaging methods such as functional magnetic resonance imaging (fMRI)
(Naselaris et al., 2012), electroencephalography (EEG) (Chan et al., 2011) and magnetoencephalogra-
phy (MEG) (Sudre et al., 2012). See (Martin, 2007) for a detailed survey. This parallel evidence to the
prominence of our categories provides substance for intriguing future research.

3 Symmetric Patterns

Patterns. In this work, patterns are combinations of words and wildcards, which provide a structural
phrase representation. Examples of patterns include “X and Y”, “X such as Y”, “X is a country”, etc.
Patterns can be used to extract various relations between words. For example, patterns such as “X of a
Y” (“basement of a building”) can be useful for detecting the meronymy (part-of) relation (Berland and
Charniak, 1999). Symmetric patterns (e.g., “X and Y”, “France and Holland”), which we use in this
paper, can be used to detect semantic similarity between words (Widdows and Dorow, 2002).

Symmetric Patterns. Symmetric patterns are patterns that contain exactly two wildcards, and where
these wildcards are interchangeable. Examples of symmetric patterns include “X and Y”, “X or Y” and
“X as well as Y”. Previous works have shown that word pairs that participate in symmetric patterns bare
strong semantic resemblance, and consequently, that these patterns can be used to cluster words into
semantic categories, where a high precision, but low coverage (recall) solution is good enough (Dorow
et al., 2005; Davidov and Rappoport, 2006). A key observation of this paper is that symmetric patterns
can be also used for semantic classification, where recall is as important as precision.

Flexible Patterns. It has been shown in previous work (Davidov and Rappoport, 2006; Turney, 2008;
Tsur et al., 2010; Schwartz et al., 2013) that patterns can be extracted from plain text in a fully unsu-
pervised manner. The key idea that makes this procedure possible is the concept of “flexible patterns”,
which are composed of high frequency words (HFW) and content words (CW). Every word in the lan-
guage is defined as either HFW or CW, based on the number of times this word appears in a large corpus.
This clustering procedure is applied by traversing a large corpus, and marking words that appear with
corpus frequency higher than a predefined threshold t1 as HFWs, and words with corpus frequency lower
than t2 as CWs.1

1We follow (Davidov and Rappoport, 2006) and set t1 = 10−5, t2 = 10−3. Note that some words are marked both as HFW
and as CW. See (Davidov and Rappoport, 2008) for discussion.



The resulting clusters have a desired property: HFWs are comprised mostly of function words (prepo-
sitions, determiners, etc.) while CWs are comprised mostly of content words (nouns, verbs, adjectives
and adverbs). This coarse grained clustering is useful for pattern extraction from plain text, since lan-
guage patterns tend to use fixed function words, while content words change from one instance of the
pattern to another (Davidov and Rappoport, 2006).

Flexible patterns are extracted by traversing a large corpus and, based on the clustering of words to
CWs and HFWs, extracting all pattern instances. An extracted pattern instance consists of CW wildcards
and the actual words replacing the HFWs in the pattern type. Consider the sentence “The boy is happy
and joyful”. Replacing the content words with the CW wildcard results in “The CW is CW and CW”.
From this intermediate representation, we extract word sequences of a given length constraint and denote
them as flexible patterns.2 The flexible patterns of length 5 extracted from this sentence are “The CW is
CW and” and “CW is CW and CW”. The reader is referred to (Davidov and Rappoport, 2006) for more
details.

Automatically Extracted Symmetric Patterns. Most models that incorporate symmetric patterns use
a predefined set of patterns (Widdows and Dorow, 2002; Kozareva et al., 2008). In this work, we apply
an automatic, completely unsupervised procedure for symmetric pattern extraction. This procedure,
described in Algorithm 1, is adopted from (Davidov and Rappoport, 2006).

The procedure first extracts flexible patterns that contain exactly two CW wildcards. It then selects
those flexible patterns in which both CWs are interchangeable. That is, it selects a pattern p if every
word pair CW1, CW2 that participates in p indicates with high probability that the word pair C2, C1

also participates in p. For example, for the symmetric pattern “CW and CW”, both “cats and dogs”
and “dogs and cats” are semantically plausible expressions, and are therefore likely to appear in a large
corpus. On the other hand, the flexible pattern “CW such as CW” is asymmetric, as exemplified in
expressions like “countries such as France”, where replacing the CWs does not result in a semantically
plausible expression (# “France such as countries”). The selection process is done by computing the
proportion of CW1, CW2 pairs that participate in p for which CW2, CW1 also participates in p. Patterns
for which this proportion exceed a certain threshold are selected.

We apply Algorithm 1 on the google books 5-gram corpus (Michel et al., 2011)3 and extract 20 sym-
metric patterns. Some of the more interesting symmetric patterns extracted using this algorithm include
“CW and the CW”, “from CW to CW”, “CW rather than CW” and “CW versus CW”. In the next section
we present our approach to semantic classification, which makes use of automatically acquired symmet-
ric patterns for word similarity computations.

4 Model

In this section we present our model for binary word classification according to a single semantic category
in a minimally-supervised, transductive setup. Given a set of words, we label a small number of words
with their correct label according to the category at hand (+1 for words that belong to the category, -1
for words that do not belong to it). Our model is based on an undirected weighted graph, in which
vertices correspond to words, and edges correspond to relations between words. Our goal is to classify
the unlabeled words (vertices) in the graph through a label propagation process. We now turn to describe
our model in detail.

Graph Construction. We construct our graph such that an edge is added between two words (vertices)
if both words participate in a symmetric pattern. The edge generation process is performed as follows.
We first apply our symmetric pattern extraction procedure (Algorithm 1), and denote the set of selected
symmetric patterns with P . We then traverse a large corpus4 and extract all word pairs that participate
in any pattern p ∈ P . We denote the number of occurrences of a word pair (w1, w2) in such patterns
with fw1,w2 . Finally, we select all word pairs (w1, w2) for which min(fw1,w2 , fw2,w1) > α. Each such

2We set the maximal flexible pattern length to be 5.
3https://books.google.com/ngrams
4We use google books 5-grams (Michel et al., 2011).



Algorithm 1 Symmetric pattern extraction
1: procedure EXTRACT SYMMETRIC PATTERNS(C,W )
2: . C is a large corpus, W is a lexicon
3: . Traverse C and extract all flexible patterns of length 3-5 that appear in C and contain exactly two content words
4: P ← extract flexible patterns(C,W )
5: for p ∈ P do
6: if p appears in <10−6 of the sentences in C then
7: Discard p and continue
8: end if
9: Gp ← a directed graph s.t. V (Gp)←W ,E(Gp)←{(w1, w2)∈W 2:w1,w2 participate in at least one instance of p}

10: . An undirected graph based on the bidirectional edges of the Gp

11: symGp ← an undirected graph: {(w1), (w1,w2) : (w1,w2) ∈ E(Gp) ∧ (w2, w1) ∈ E(Gp)}
12: . Two measures of symmetry

13: M1 ← |V (symGp)|
|V (Gp)| ,M2 ← |E(symGp)|

|E(Gp)|
14: . Symmetric pattern candidates are those with high M1 and M2 values
15: if min (M1,M2) < 0.05 then
16: Discard p
17: end if
18: end for
19: for p ∈ P do
20: . E.g., “CW and CW” is contained in “both CW and CW”
21: if ∃p′ ∈ P s.t. p′ is contained in p then
22: Discard p
23: end if
24: end for
25: return The top 20 members of P with the highest M1 value

26: end procedure

pair is connected with an edge ew1,w2 in the graph, where the edge weight (denoted with ww1,w2) is the
geometric mean between fw1,w2 and fw2,w1 .

Label Propagation. Given a small number of annotated words (vertices), our goal is to propagate the
information these words convey to other words in the graph. To do so, we apply an iterative variant of the
k-Nearest Neighbors algorithm (I-k-NN). This iterative variant is required due to graph sparsity; when
starting with a small set of labeled vertices, most unlabeled vertices do not have any labeled neighbor, and
thus running the standard k-NN algorithm would result in classifying a very small number of vertices.
Our approach is to run iterations of the k-NN algorithm, and thus propagate information to additional
vertices at each iteration. At each k-NN step, the algorithm selects words that have at least one labeled
neighbor. From this set, only the words that have the highest ratio of neighbors with the same label are
selected, and are assigned with this label.

Consider a simple example. Say we have three candidate vertices a, b and c, where a has one neighbor
with label +1 (ratio(a) = 1/1 = 1.0), b has two neighbors with label -1 (ratio(b) = 2/2 = 1.0) and
c has three neighbors with label +1 and one neighbor with label -1 (ratio(c) = max(3, 1)/4 = 3/4).
Then, a and b are selected and are assigned with +1 and −1, respectively.

Seed Expansion. In minimally supervised setups like ours, the model is initialized with a small set of
labeled seed examples. A natural approach in such settings is to apply a seed expansion step, in order to
obtain a larger set of labeled seeds. Our method uses the same graph construction procedure described
above, but uses a larger edge generation threshold β >> α.5 We then apply an iterative procedure that
labels a vertex v with a label l if either (a) v is directly connected to γ of the vertices labeled with l or (b)
v is connected to δl of the neighbors of vertices labeled with l.6 This procedure is run iteratively until no
more vertices meet any of the criteria (a) or (b).

5Using a larger threshold results in a sparser graph. Nevertheless, each edge in this graph is more likely to represent a real
semantic relation.

6γ and δl are hyperparameters tuned on our development set (see Section 5.2).



5 Experimental Setup

5.1 Baselines

We compare our model to two types of baselines. The first (Classification Features Baselines) utilizes
the I-k-NN algorithm, along with a different set of classification features. The second (Label Propa-
gation Baselines) utilizes the same classification features as we do, but replaces I-k-NN with a more
sophisticated label propagation algorithm.

5.1.1 Classification Features Baselines
In this set of baselines, we use different methods for building our graph. Concretely, instead of adding
edges for pairs of words that appear in the same symmetric pattern, we use word similarity measures
based on different feature sets as described below. The process of building the graph using the baseline
word similarity measures is described in Section 5.2.

SENNA. Deep neural networks have gained recognition as leading feature extraction methods for word
representation (Collobert and Weston, 2008; Socher et al., 2013). We use SENNA,7 a deep network based
word embedding method, which has been used to produce state-of-the-art results in several NLP tasks,
including POS tagging, chunking, NER, parsing and SRL (Collobert et al., 2011). We use the cosine
similarity between two word embeddings as a word similarity measure.

Brown. This baseline is derived from the clustering induced by the Brown algorithm (Brown et al.,
1992).8 This clustering, in which words share a cluster if they tend to appear in the same lexical con-
text, has shown useful for several NLP tasks, including POS tagging (Clark, 2000), NER (Miller et al.,
2004) and dependency parsing (Koo et al., 2008). We use it in order to control for the possibility that a
simple contextual preference similarity correlates with similarity in semantic categorization better than
symmetric pattern features.

The Brown algorithm builds a binary tree, where words are located at leaf nodes. We use the graph
distance between two words u, v (i.e., the shortest path length between u, v in the tree) as a word simi-
larity measure for building our graph.

5.1.2 Label Propagation Baselines
In this type of baselines, we replace I-k-NN with a different label propagation algorithm, while still using
the symmetric pattern features for word similarity computations.

N-Cut. This baseline applies the normalized graph cut algorithm (Yu and Shi, 2003)9 for label propa-
gation. Given a graphG = (V,E) and two sets of verticesA,B ⊆ V , this algorithm defines links(A,B)
to be the sum of edge weights between A and B. The objective of the algorithm is to find the clusters
A, V \ A that minimize links(A,V \A)

links(A,V ) . The algorithm of (Yu and Shi, 2003) is particularly efficient for
this problem as it avoids eigenvector computations which may become computationally prohibitive for
large graphs (for more details, see their paper). In order to encode information about our labeled seed
words, we hard-code a large negative value (-100000) to the weights of edges between seed words with
different labels (positive and negative).

MAD. The Modified Adsorption (MAD) algorithm (Talukdar and Crammer, 2009)10 is an extension
of the Adsorption algorithm (Baluja et al., 2008). MAD is a stochastic graph-based label propagation
algorithm which has shown to have a number of attractive theoretical properties and demonstrated good
experimental results.

7The word embeddings were downloaded from http://ml.nec-labs.com/senna/
8We use the clusters induced by (Koo et al., 2008), who applied the Brown algorithm implementation of (Liang,

2005) to the BLLIP corpus (Charniak et al., 2000). http://www.people.csail.mit.edu/maestro/papers/
bllip-clusters.gz

9http://www.cis.upenn.edu/˜jshi/software/Ncut_9.zip
10http://github.com/parthatalukdar/junto



5.2 Experiments
Graph Construction. We experiment with the CSLB dataset (Devereux et al., 2013), consisting of 638
nouns, annotated with their semantic categories by thirty human subjects. We first omit all nouns that
are annotated as having more than one sense, and use the remaining 603 nouns to build our graph. From
these nouns, 146 nouns are annotated as animate, 115 as edible, 50 as wearable and 35 as tools.11 We
then discard nouns that have less than two neighbors, which results in a final set of 450 nouns (vertices).

The graphs used in the classification features baselines are different than those used by the models that
use our symmetric pattern classification features, since the features define the graph structure (Section 4).
In order to provide a meaningful comparison, we build graphs with the same number of vertices for each
of these baselines. We do so by selecting the n edges with the highest weight, together with the set of
vertices connected by these edges, such that the resulting graph has 450 vertices. Working with these
sets of vertices is the optimal setting for these baselines, as the resulting graphs are the ones with the
highest possible edge weights for graphs with 450 vertices.12

Parameter Tuning. In order to avoid adding additional labeled examples for the sake of parameter
tuning, we set the hyperparameter values to the ones for which each model performs best on an auxiliary
semantic classification task. Concretely, we experiment with a fifth semantic category (audibility),13

which is not part of our evaluation setting, for parameter tuning. Note that this results in our model
having the same hyperparamter values for all four classification tasks.

In order to ensure that the models assign all participating words with labels, we set α=3, where α is
the minimal number of times a word pair should appear in the same symmetric pattern in order to have
an edge in our graph (See Section 4). In our seed expansion procedure, where we search for seeds whose
label is predicted with high confidence, only word pairs that appear at least β=50 times in the same
symmetric pattern are assigned an edge in the graph. We set the seed expansion procedure parameters to
be γ = 0.6, δ+1 = 0.5, δ−1 = 0.2.

Evaluation. For each classification task, we run experiments with 4, 10, 20 and 40 labeled seed words.
In each setting, half of the labeled seed words are assigned a positive label and the other half are assigned
a negative label. For each semantic category and labeled seed set size, we repeat our experiment 1000
times, each of which with a different set of randomly selected labeled seed examples, and report the
average results. We report both accuracy (number of correct labels divided by number of vertices in
the graph) and F1 score, which is the harmonic mean of p (the average precision across labels) and r
(average recall across labels).

These two measures represent complementary aspects of our results. On the one hand, accuracy is
the most natural classification performance measure. On the other hand, the number of positive labels is
substantially smaller than the number of negative labels,14 and thus this measure can be manipulated: a
dummy model that always assigns the negative label gets a high accuracy. The F1 score controls against
such models by assigning them low scores.

6 Results

Our experiments are designed to explore two main questions: (a) the value of symmetric patterns as
semantic classification features, compared to state-of-the-art word clustering and embedding methods;
and (b) the required complexity of an algorithm that can propagate information about semantic simi-
larity. Particularly, we test the value of our simple I-k-NN algorithm compared to more sophisticated
alternatives.

A Minimally Supervised Setting. Our first set of experiments is in a minimally supervised setting
where only two positive and two negative examples are available for each binary classification task. This

11Some words are classified as belonging to more than one category (e.g., “chicken” is both animate and edible).
12The resulting graphs are actually denser than the symmetric patterns-based graph: 14K and 9K edges for the Brown and

SENNA graphs, respectively, compared to < 5K edges in the symmetric patterns graph.
13We used four labeled seed words in these experiments.
14Only 6-25% of the nouns have a positive label.



Animacy Edibility is worn is a tool
SP SENNA Brown SP SENNA Brown SP SENNA Brown SP SENNA Brown

Acc.
MAD 80.4% 77.7% 12.0% 75.0% 56.5% 14.8% 82.7% 66.8% 14.7% 73.3% 67.7% 12.2%
N-Cut 71.4% 60.4% 51.2% 75.5% 59.4% 50.9% 83.3% 71.5% 51.4% 82.7% 77.1% 52.0%
I-k-NN 85.1% 76.0% 55.5% 82.2% 56.8% 68.0% 94.1% 70.9% 66.7% 82.0% 75.7% 65.0%

F1
MAD 0.77 0.76 0.18 0.69 0.55 0.24 0.71 0.56 0.22 0.58 0.47 0.17
N-Cut 0.49 0.45 0.46 0.51 0.44 0.45 0.61 0.56 0.41 0.56 0.50 0.38
I-k-NN 0.78 0.70 0.48 0.71 0.53 0.62 0.86 0.59 0.55 0.64 0.52 0.51

Table 2: Accuracy and F1 score comparison between our model and the baselines. The columns cor-
respond to the type of classification features used by the model: SP – symmetric patterns, SENNA –
word embeddings extracted using deep networks (Collobert et al., 2011), Brown – Brown word clus-
tering (Brown et al., 1992). The rows correspond to the algorithms applied by the model: N-Cut – the
normalized graph cut algorithm (Yu and Shi, 2003), MAD – the modified adsorption algorithm (Talukdar
and Crammer, 2009), I-k-NN – our iterative k-NN algorithm. Our model (I-k-NN + SP) is superior in all
cases, except for the accuracy of the “is a tool” semantic category, where it is second only to N-Cut+SP.
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(c) Top four Best Models

Figure 1: (a) Comparison of the different classification features. The figure shows the F1 scores of the
best model that uses each of the feature sets (the label propagation algorithm used in each model appears
in parentheses). (b) Comparison of the different label propagation algorithms. The figure shows the F1
scores of the best model that uses each of the algorithms (the classification feature sets used in each model
appears in parentheses. It is always symmetric patterns). (c) The four best overall models (algorithm +
classification feature set). The figures show that the symmetric pattern feature set is superior to the other
feature sets, and that I-k-NN is superior or comparable to the other label propagation algorithms.

setup enables us to explore the performance of our model when the amounts of labeled training data is
taken to the possible minimum.

Table 2 presents our results. With respect to objective (a), the table clearly demonstrates that symmetric
patterns lead to much better results compared to the alternatives. Particularly, for all four semantic
categories, and across both evaluation measures, it is a model that utilizes symmetric pattern classification
features that achieves the best results. The average difference between the best model that uses symmetric
patterns and the best model that does not is 12.5% accuracy and 0.13 F1 points. The dominance of
symmetric pattern classification features is further demonstrated by the fact that a model that uses these
features always performs better than a model that uses the same algorithm but different features.

With respect to objective (b) the table shows that I-k-NN provides a large improvement in seven out
of eight (category × evaluation measure) settings. The average difference between the best model that
utilizes I-k-NN and the best model that applies a different algorithm is 5.4% accuracy and 0.06 F1 points.

Analysis of Labeled Seed Set Size. In order to get a wider perspective on our model, we repeated our
experiments with various sizes of the labeled seed set: 5,10 and 20 positive and negative labeled examples
per semantic category. For brevity, only the F1 score results of the edibility category are presented. The
trends observed on the other semantic categories (as well as when using the accuracy measure) are very
similar.

Figure 1a compares the different classification features. For each feature f , results of the best per-
forming model that uses f are shown. The results reveal that symmetric patterns clearly outperform the
other features. The average differences between the best symmetric patterns-based model and the best



models that use the other features are 0.15 (SENNA) and 0.16 (Brown) F1 points.
Figure 1b compares the different label propagation algorithms. For each algorithm a, results for the

best performing model that uses a are presented. The results reveal that the I-k-NN algorithm outper-
forms both algorithms by 0.03 (MAD) and 0.21 (N-Cut) F1 points. The results also show that for all
algorithms, the best performing model uses symmetric patterns classification features, which further
demonstrates the dominance of these features.

Finally, Figure 1c presents the four top performing models (algorithm + classification feature). In
accordance with the other findings presented in this section, the top two models, which outperform the
other models by a large margin, apply symmetric pattern classification features.

Seed Expansion Effect. Our model uses a seed expansion procedure in order to expand a small set of
labeled seed words to a larger set (see Section 4). In order to assess the quality of this procedure we
compute, for each semantic category, the average size of the expanded set and the accuracy of the new
seeds (i.e., the proportion of new seeds that are labeled correctly). Results show that the initial set is
increased from four seeds (two positive + two negative) to 48-52, and that the accuracy of the new seeds
is as high as 88-99%. Our experiments also show that this procedure provides a substantial performance
boost to our I-k-NN algorithm, which obtains a 7.2% accuracy and 0.05 F1 points improvement (averaged
over the four semantic categories) when applied with the expanded set of labeled seed words compared
to the original set of size four.

7 Related Work

Classification into Semantic Categories. Several works tackled the task of semantic classification,
mostly focusing on animacy, concreteness and countability. The vast majority of these works are either
supervised (Hatzivassiloglou and McKeown, 1997; Baldwin and Bond, 2003; Peng and Araki, 2005;
Øvrelid, 2005; Nagata et al., 2006; Xing et al., 2010; Kwong, 2011; Bowman and Chopra, 2012) or
make use of external, language-specific resources such as WordNet (Orǎsan and Evans, 2001; Orǎsan
and Evans, 2007; Moore et al., 2013). Our work, in contrast, is minimally supervised, requiring only a
small set of labeled seed words.

Ji and Lin (2009) classified words into the gender and animacy categories, based on their occurrences
in instances of hand-crafted patterns such as “X who Y” and “X and his Y”. While their model uses
patterns that are tailored to the animacy and gender categories, our model uses automatically induced
patterns and is thus applicable to a range of semantic categories.

Finally, Turney et al. (2011) built a label propagation model that utilizes LSA (Landauer and Dumais,
1997) based classification features. They used their model to classify nouns into the concrete/abstract
category using 40 labeled seed words . Unlike our model, which requires only a small set of labeled seeds,
their algorithm is actually heavily supervised, requiring thousands of labeled examples for selecting the
seed set of labeled words that are used for propagation. Our model, on the other hand, does not require
any seed selection procedure, and utilizes a randomly selected set of labeled seed words.

Lexical Acquisition. Another line of work focused on the acquisition of semantic categories. In this
setup, a model aims to find a core seed of words belonging to a given category, sacrificing recall for
precision. Our model tackles a different task, namely the classification of words according to a given
category where both recall and precision are to be optimized.

Lexical acquisition models are either supervised (Snow et al., 2006), unsupervised, making use of
symmetric patterns (Davidov and Rappoport, 2006), or lightly supervised, requiring expert, language
specific knowledge for compiling a set of hand-crafted patterns (Widdows and Dorow, 2002; Kozareva et
al., 2008; Wang and Cohen, 2009). Other models require syntactic annotation derived from a supervised
parser to extract coordination phrases (Riloff and Shepherd, 1997; Dorow et al., 2005). Our model
automatically induces symmetric patterns, obtaining high quality results without relying on any type of
language specific knowledge or annotation. Moreover, some of the works mentioned above (Riloff and
Shepherd, 1997; Widdows and Dorow, 2002; Kozareva et al., 2008) also require manually selected label



seeds to achieve good performance; in contrast, our work performs very well with a randomly selected
set of labeled seed words.

8 Conclusion

We presented a minimally supervised model for noun classification into coarse grained semantic cate-
gories. Our model obtains 82%-94% accuracy on four semantic categories even when using only four
labeled seed words per category. We showed that our modeling decisions – using symmetric patterns as
classification features and a simple iterative k-NN algorithm for label propagation – lead to a substantial
performance gain compared to state-of-the-art, more sophisticated, alternatives. Our results demonstrate
the applicability of minimally supervised methods for semantic classification tasks. Future work will
include modifying our model to support other, more fine-grained types of semantic categories, includ-
ing adjectival categories (properties). We also plan to work on token-level word classification, and thus
support multi-sense words, as well as demonstrate the power of unsupervised patterns acquisition for
multilingual setups.
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Abstract

We present a novel word level vector rep-
resentation based on symmetric patterns
(SPs). For this aim we automatically ac-
quire SPs (e.g., “X and Y”) from a large
corpus of plain text, and generate vectors
where each coordinate represents the co-
occurrence in SPs of the represented word
with another word of the vocabulary. Our
representation has three advantages over
existing alternatives: First, being based on
symmetric word relationships, it is highly
suitable for word similarity prediction.
Particularly, on the SimLex999 word simi-
larity dataset, our model achieves a Spear-
man’s ρ score of 0.517, compared to 0.462
of the state-of-the-art word2vec model. In-
terestingly, our model performs exception-
ally well on verbs, outperforming state-
of-the-art baselines by 20.2–41.5%. Sec-
ond, pattern features can be adapted to the
needs of a target NLP application. For ex-
ample, we show that we can easily control
whether the embeddings derived from SPs
deem antonym pairs (e.g. (big,small)) as
similar or dissimilar, an important distinc-
tion for tasks such as word classification
and sentiment analysis. Finally, we show
that a simple combination of the word sim-
ilarity scores generated by our method and
by word2vec results in a superior predic-
tive power over that of each individual
model, scoring as high as 0.563 in Spear-
man’s ρ on SimLex999. This emphasizes
the differences between the signals cap-
tured by each of the models.

1 Introduction

In the last decade, vector space modeling (VSM)
for word representation (a.k.a word embedding),

has become a key tool in NLP. Most approaches to
word representation follow the distributional hy-
pothesis (Harris, 1954), which states that words
that co-occur in similar contexts are likely to have
similar meanings.

VSMs differ in the way they exploit word co-
occurrence statistics. Earlier works (see (Turney et
al., 2010)) encode this information directly in the
features of the word vector representation. More
Recently, Neural Networks have become promi-
nent in word representation learning (Bengio et
al., 2003; Collobert and Weston, 2008; Collobert
et al., 2011; Mikolov et al., 2013a; Pennington et
al., 2014, inter alia). Most of these models aim
to learn word vectors that maximize a language
model objective, thus capturing the tendencies of
the represented words to co-occur in the training
corpus. VSM approaches have resulted in highly
useful word embeddings, obtaining high quality
results on various semantic tasks (Baroni et al.,
2014).

Interestingly, the impressive results of these
models are achieved despite the shallow linguis-
tic information most of them consider, which is
limited to the tendency of words to co-occur to-
gether in a pre-specified context window. Particu-
larly, very little information is encoded about the
syntactic and semantic relations between the par-
ticipating words, and, instead, a bag-of-words ap-
proach is taken.1

This bag-of-words approach, however, comes
with a cost. As recently shown by Hill et al.
(2014), despite the impressive results VSMs that
take this approach obtain on modeling word as-
sociation, they are much less successful in model-
ing word similarity. Indeed, when evaluating these
VSMs with datasets such as wordsim353 (Finkel-
stein et al., 2001), where the word pair scores re-

1A few recent VSMs go beyond the bag-of-words as-
sumption and consider deeper linguistic information in word
representation. We address this line of work in Section 2.



flect association rather than similarity (and there-
fore the (cup,coffee) pair is scored higher than
the (car,train) pair), the Spearman correlation be-
tween their scores and the human scores often
crosses the 0.7 level. However, when evaluat-
ing with datasets such as SimLex999 (Hill et al.,
2014), where the pair scores reflect similarity, the
correlation of these models with human judgment
is below 0.5 (Section 6).

In order to address the challenge in model-
ing word similarity, we propose an alternative,
pattern-based, approach to word representation. In
previous work patterns were used to represent a
variety of semantic relations, including hyponymy
(Hearst, 1992), meronymy (Berland and Charniak,
1999) and antonymy (Lin et al., 2003). Here, in
order to capture similarity between words, we use
Symmetric patterns (SPs), such as “X and Y” and
“X as well as Y”, where each of the words in the
pair can take either the X or the Y position. Sym-
metric patterns have shown useful for representing
similarity between words in various NLP tasks in-
cluding lexical acquisition (Widdows and Dorow,
2002), word clustering (Davidov and Rappoport,
2006) and classification of words to semantic cat-
egories (Schwartz et al., 2014). However, to the
best of our knowledge, they have not been applied
to vector space word representation.

Our representation is constructed in the follow-
ing way (Section 3). For each word w, we con-
struct a vector v of size V , where V is the size of
the lexicon. Each element in v represents the co-
occurrence in SPs of w with another word in the
lexicon, which results in a sparse word represen-
tation. Unlike most previous works that applied
SPs to NLP tasks, we do not use a hard coded set
of patterns. Instead, we extract a set of SPs from
plain text using an unsupervised algorithm (Davi-
dov and Rappoport, 2006). This substantially re-
duces the human supervision our model requires
and makes it applicable for practically every lan-
guage for which a large corpus of text is available.

Our SP-based word representation is flexible.
Particularly, by exploiting the semantics of the
pattern based features, our representation can be
adapted to fit the specific needs of target NLP ap-
plications. In Section 4 we exemplify this prop-
erty through the ability of our model to con-
trol whether its word representations will deem
antonyms similar or dissimilar. Antonyms are
words that have opposite semantic meanings (e.g.,

(small,big)), yet, due to their tendency to co-occur
in the same context, they are often assigned sim-
ilar vectors by co-occurrence based representa-
tion models (Section 6). Controlling the model
judgment of antonym pairs is highly useful for
NLP tasks: in some tasks, like word classification,
antonym pairs such as (small,big) belong to the
same class (size adjectives), while in other tasks,
like sentiment analysis, identifying the difference
between them is crucial. As discussed in Section
4, we believe that this flexibility holds for various
other pattern types and for other lexical semantic
relations (e.g. hypernymy, the is-a relation, which
holds in word pairs such as (dog,animal)).

We experiment (Section 6) with the SimLex999
dataset (Hill et al., 2014), consisting of 999 pairs
of words annotated by human subjects for similar-
ity. When comparing the correlation between the
similarity scores derived from our learned repre-
sentation and the human scores, our representation
receives a Spearman correlation coefficient score
(ρ) of 0.517, outperforming six strong baselines,
including the state-of-the-art word2vec (Mikolov
et al., 2013a) embeddings, by 5.5–16.7%. Our
model performs particularly well on the verb por-
tion of SimLex999 (222 verb pairs), achieving a
Spearman score of 0.578 compared to scores of
0.163–0.376 of the baseline models, an astonish-
ing improvement of 20.2–41.5%. Our analysis re-
veals that the antonym adjustment capability of
our model is vital for its success.

We further demonstrate that the word pair
scores produced by our model can be combined
with those of word2vec to get an improved pre-
dictive power for word similarity. The combined
scores result in a Spearman’s ρ correlation of
0.563, a further 4.6% improvement compared to
our model, and a total of 10.1–21.3% improve-
ment over the baseline models. This suggests that
the models provide complementary information
about word semantics.

2 Related Work

Vector Space Models for Lexical Semantics.
Research on vector spaces for word representation
dates back to the early 1970’s (Salton, 1971). In
traditional methods, a vector for each word w is
generated, with each coordinate representing the
co-occurrence ofw and another context item of in-
terest – most often a word but possibly also a sen-
tence, a document or other items. The feature rep-



resentation generated by this basic construction is
sometimes post-processed using techniques such
as Positive Pointwise Mutual Information (PPMI)
normalization and dimensionality reduction. For
recent surveys, see (Turney et al., 2010; Clark,
2012; Erk, 2012).

Most VSM works share two important charac-
teristics. First, they encode co-occurrence statis-
tics from an input corpus directly into the word
vector features. Second, they consider very lit-
tle information on the syntactic and semantic rela-
tions between the represented word and its context
items. Instead, a bag-of-words approach is taken.

Recently, there is a surge of work focusing on
Neural Network (NN) algorithms for word repre-
sentations learning (Bengio et al., 2003; Collobert
and Weston, 2008; Mnih and Hinton, 2009; Col-
lobert et al., 2011; Dhillon et al., 2011; Mikolov
et al., 2013a; Mnih and Kavukcuoglu, 2013; Le-
bret and Collobert, 2014; Pennington et al., 2014).
Like the more traditional models, these works also
take the bag-of-words approach, encoding only
shallow co-occurrence information between lin-
guistic items. However, they encode this informa-
tion into their objective, often a language model,
rather than directly into the features.

Consider, for example, the successful word2vec
model (Mikolov et al., 2013a). Its continuous-bag-
of-words architecture is designed to predict a word
given its past and future context. The resulted ob-
jective function is:

max
T∑

t=1

log p(wt|wt−c, . . . , wt−1, wt+1, . . . , wt+c)

where T is the number of words in the corpus,
and c is a pre-determined window size. Another
word2vec architecture, skip-gram, aims to predict
the past and future context given a word. Its ob-
jective is:

max

T∑

t=1

∑

−c≤j≤c,j 6=0

log p(wt+j |wt)

In both cases the objective function relates to the
co-occurrence of words within a context window.

A small number of works went beyond the bag-
of-words assumption, considering deeper relation-
ships between linguistic items. The Strudel sys-
tem (Baroni et al., 2010) represents a word using
the clusters of lexico-syntactic patterns in which
it occurs. Murphy et al. (2012) represented words
through their co-occurrence with other words in
syntactic dependency relations, and then used the

Non-Negative Sparse Embedding (NNSE) method
to reduce the dimension of the resulted represen-
tation. Levy and Goldberg (2014) extended the
skip-gram word2vec model with negative sam-
pling (Mikolov et al., 2013b) by basing the word
co-occurrence window on the dependency parse
tree of the sentence. Bollegala et al. (2015) re-
placed bag-of-words contexts with various pat-
terns (lexical, POS and dependency).

We introduce a symmetric pattern based ap-
proach to word representation which is particu-
larly suitable for capturing word similarity. In ex-
periments we show the superiority of our model
over six models of the above three families: (a)
bag-of-words models that encode co-occurrence
statistics directly in features; (b) NN models that
implement the bag-of-words approach in their ob-
jective; and (c) models that go beyond the bag-of-
words assumption.

Similarity vs. Association Most recent VSM
research does not distinguish between association
and similarity in a principled way, although no-
table exceptions exist. Turney (2012) constructed
two VSMs with the explicit goal of capturing ei-
ther similarity or association. A classifier that
uses the output of these models was able to pre-
dict whether two concepts are associated, sim-
ilar or both. Agirre et al. (2009) partitioned
the wordsim353 dataset into two subsets, one fo-
cused on similarity and the other on association.
They demonstrated the importance of the associ-
ation/similarity distinction by showing that some
VSMs perform relatively well on one subset while
others perform comparatively better on the other.

Recently, Hill et al. (2014) presented the Sim-
Lex999 dataset consisting of 999 word pairs
judged by humans for similarity only. The partic-
ipating words belong to a variety of POS tags and
concreteness levels, arguably providing a more re-
alistic sample of the English lexicon. Using their
dataset the authors show the tendency of VSMs
that take the bag-of-words approach to capture as-
sociation much better than similarity. This obser-
vation motivates our work.

Symmetric Patterns. Patterns (symmetric or
not) were found useful in a variety of NLP
tasks, including identification of word relations
such as hyponymy (Hearst, 1992), meronymy
(Berland and Charniak, 1999) and antonymy (Lin
et al., 2003). Patterns have also been applied to



tackle sentence level tasks such as identification
of sarcasm (Tsur et al., 2010), sentiment analysis
(Davidov et al., 2010) and authorship attribution
(Schwartz et al., 2013).

Symmetric patterns (SPs) were employed in var-
ious NLP tasks to capture different aspects of word
similarity. Widdows and Dorow (2002) used SPs
for the task of lexical acquisition. Dorow et al.
(2005) and Davidov and Rappoport (2006) used
them to perform unsupervised clustering of words.
Kozareva et al. (2008) used SPs to classify proper
names (e.g., fish names, singer names). Feng et
al. (2013) used SPs to build a connotation lexicon,
and Schwartz et al. (2014) used SPs to perform
minimally supervised classification of words into
semantic categories.

While some of these works used a hand crafted
set of SPs (Widdows and Dorow, 2002; Dorow et
al., 2005; Kozareva et al., 2008; Feng et al., 2013),
Davidov and Rappoport (2006) introduced a fully
unsupervised algorithm for the extraction of SPs.
Here we apply their algorithm in order to reduce
the required human supervision and demonstrate
the language independence of our approach.

Antonyms. A useful property of our model is
its ability to control the representation of antonym
pairs. Outside the VSM literature several works
identified antonyms using word co-occurrence
statistics, manually and automatically induced pat-
terns, the WordNet lexicon and thesauri (Lin et al.,
2003; Turney, 2008; Wang et al., 2010; Moham-
mad et al., 2013; Schulte im Walde and Koper,
2013; Roth and Schulte im Walde, 2014). Re-
cently, Yih et al. (2012), Chang et al. (2013)
and Ono et al. (2015) proposed word represen-
tation methods that assign dissimilar vectors to
antonyms. Unlike our unsupervised model, which
uses plain text only, these works used the WordNet
lexicon and a thesaurus.

3 Model

In this section we describe our approach for gener-
ating pattern-based word embeddings. We start by
describing symmetric patterns (SPs), continue to
show how SPs can be acquired automatically from
text, and, finally, explain how these SPs are used
for word embedding construction.

3.1 Symmetric Patterns
Lexico-syntactic patterns are sequences of words
and wildcards (Hearst, 1992). Examples of pat-

Candidate Examples of Instances
“X of Y” “point of view”, “years of age”
“X the Y” “around the world”, “over the past”
“X to Y” “nothing to do”, “like to see”

“X and Y” “men and women”, “oil and gas”
“X in Y” “keep in mind”, “put in place”

“X of the Y” “rest of the world”, “end of the war”

Table 1:
The six most frequent pattern candidates that contain exactly

two wildcards and 1-3 words in our corpus.

terns include “X such as Y”, “X or Y” and “X is
a Y”. When patterns are instantiated in text, wild-
cards are replaced by words. For example, the pat-
tern “X is a Y”, with the X and Y wildcards, can
be instantiated in phrases like “Guffy is a dog”.

Symmetric patterns are a special type of patterns
that contain exactly two wildcards and that tend
to be instantiated by wildcard pairs such that each
member of the pair can take the X or the Y posi-
tion. For example, the symmetry of the pattern “X
or Y” is exemplified by the semantically plausible
expressions “cats or dogs” and “dogs or cats”.

Previous works have shown that words that co-
occur in SPs are semantically similar (Section 2).
In this work we use symmetric patterns to repre-
sent words. Our hypothesis is that such represen-
tation would reflect word similarity (i.e., that sim-
ilar vectors would represent similar words). Our
experiments show that this is indeed the case.

Symmetric Patterns Extraction. Most works
that used SPs manually constructed a set of such
patterns. The most prominent patterns in these
works are “X and Y” and “X or Y” (Widdows and
Dorow, 2002; Feng et al., 2013). In this work we
follow (Davidov and Rappoport, 2006) and apply
an unsupervised algorithm for the automatic ex-
traction of SPs from plain text.

This algorithm starts by defining an SP template
to be a sequence of 3-5 tokens, consisting of ex-
actly two wildcards, and 1-3 words. It then tra-
verses a corpus, looking for frequent pattern can-
didates that match this template. Table 1 shows the
six most frequent pattern candidates, along with
common instances of these patterns.

The algorithm continues by traversing the pat-
tern candidates and selecting a pattern p if a large
portion of the pairs of words wi, wj that co-occur
in p co-occur both in the (X = wi,Y = wj) form
and in the (X = wj ,Y = wi) form. Consider, for
example, the pattern candidate “X and Y”, and the
pair of words “cat”,“dog”. Both pattern instances



“cat and dog” and “dog and cat” are likely to be
seen in a large corpus. If this property holds for a
large portion2 of the pairs of words that co-occur
in this pattern, it is selected as symmetric. On the
other hand, the pattern candidate “X of Y” is in
fact asymmetric: pairs of words such as “point”,
“view” tend to come only in the (X = “point”,Y
= “view”) form and not the other way around.
The reader is referred to (Davidov and Rappoport,
2006) for a more formal description of this algo-
rithm. The resulting pattern set we use in this pa-
per is “X and Y”, “X or Y”, “X and the Y”, “from
X to Y”, “X or the Y”, “X as well as Y”, “X or a
Y”,“X rather than Y”, “X nor Y”, “X and one Y”,
“either X or Y”.

3.2 SP-based Word Embeddings

In order to generate word embeddings, our model
requires a large corpusC, and a set of SPs P . The
model first computes a symmetric matrix M of
size V × V (where V is the size of the lexicon).
In this matrix, Mi,j is the co-occurrence count of
both wi,wj and wj ,wi in all patterns p ∈ P . For
example, if wi,wj co-occur 1 time in p1 and 3
times in p5, while wj ,wi co-occur 7 times in p9,
then Mi,j = Mj,i = 1 + 3 + 7 = 11. We then
compute the Positive Pointwise Mutual Informa-
tion (PPMI) of M , denoted by M∗.3 The vector
representation of the word wi (denoted by vi) is
the ith row in M∗.

Smoothing. In order to decrease the sparsity of
our representation, we apply a simple smoothing
technique. For each word wi, Wn

i denotes the top
n vectors with the smallest cosine-distance from
vi. We define the word embedding of wi to be

v′i = vi + α ·
∑

v∈Wn
i

v

where α is a smoothing factor.4 This process re-
duces the sparsity of our vector representation. For
example, when n = 0 (i.e., no smoothing), the
average number of non-zero values per vector is
only 0.3K (where the vector size is∼250K). When
n = 250, this number reaches ∼14K.

2We use 15% of the pairs of words as a threshold.
3PPMI was shown useful for various co-occurrence mod-

els (Baroni et al., 2014).
4We tune n and α using a development set (Section 5).

Typical values for n and α are 250 and 7, respectively.

4 Antonym Representation

In this section we show how our model allows us
to adjust the representation of pairs of antonyms to
the needs of a subsequent NLP task. This property
will later be demonstrated to have a substantial im-
pact on performance.

Antonyms are pairs of words with an opposite
meaning (e.g., (tall,short)). As the members of
an antonym pair tend to occur in the same con-
text, their word embeddings are often similar. For
example, in the skip-gram model (Mikolov et al.,
2013a), the score of the (accept,reject) pair is 0.73,
and the score of (long,short) is 0.71. Our SP-based
word embeddings also exhibit a similar behavior.

The question of whether antonyms are simi-
lar or not is not a trivial one. On the one hand,
some NLP tasks might benefit from representing
antonyms as similar. For example, in word classi-
fication tasks, words such as “big” and “small” po-
tentially belong to the same class (size adjectives),
and thus representing them as similar is desired.
On the other hand, antonyms are very dissimilar
by definition. This distinction is crucial in tasks
such as search, where a query such as “tall build-
ings” might be poorly processed if the representa-
tions of “tall” and “short” are similar.

In light of this, we construct our word embed-
dings to be controllable of antonyms. That is, our
model contains an antonym parameter that can be
turned on in order to generate word embeddings
that represent antonyms as dissimilar, and turned
off to represent them as similar.

To implement this mechanism, we follow (Lin
et al., 2003), who showed that two patterns are par-
ticularly indicative of antonymy – “from X to Y”
and “either X or Y” (e.g., “from bottom to top”,
“either high or low”). As it turns out, these two
patterns are also symmetric, and are discovered by
our automatic algorithm. Henceforth, we refer to
these two patterns as antonym patterns.

Based on this observation, we present a variant
of our model, which is designed to assign dissim-
ilar vector representations to antonyms. We de-
fine two new matrices: MSP andMAP , which are
computed similarly to M∗ (see Section 3.2), only
with different SP sets. MSP is computed using
the original set of SPs, excluding the two antonym
patterns, while MAP is computed using the two
antonym patterns only.

Then, we define an antonym-sensitive, co-



occurrence matrix M+AN to be
M+AN =MSP − β ·MAP

where β is a weighting parameter.5 Similarly to
M∗, the antonym-sensitive word representation of
the ith word is the ith row in M+AN .

Discussion. The case of antonyms presented in
this paper is an example of one relation that a
pattern based representation model can control.
This property can be potentially extended to addi-
tional word relations, as long as they can be iden-
tified using patterns. Consider, for example, the
hypernymy relation (is-a, as in the (apple,fruit)
pair). This relation can be accurately identified
using patterns such as “X such as Y” and “X like
Y” (Hearst, 1992). Consequently, it is likely that
a pattern-based model can be adapted to control
its predictions with respect to this relation using
a method similar to the one we use to control
antonym representation. We consider this a strong
motivation for a deeper investigation of pattern-
based VSMs in future work.

We next turn to empirically evaluate the perfor-
mance of our model in estimating word similarity.

5 Experimental Setup

5.1 Datasets

Evaluation Dataset. We experiment with the
SimLex999 dataset (Hill et al., 2014),6 consisting
of 999 pairs of words. Each pair in this dataset
was annotated by roughly 50 human subjects, who
were asked to score the similarity between the pair
members. SimLex999 has several appealing prop-
erties, including its size, part-of-speech diversity,
and diversity in the level of concreteness of the
participating words.

We follow a 10-fold cross-validation experi-
mental protocol. In each fold, we randomly sam-
ple 25% of the SimLex999 word pairs (∼250
pairs) and use them as a development set for pa-
rameter tuning. We use the remaining 75% of the
pairs (∼750 pairs) as a test set. We report the av-
erage of the results we got in the 10 folds.

Training Corpus. We use an 8G words corpus,
constructed using the word2vec script.7 Through
this script we also apply a pre-processing step

5We tune β using a development set (Section 5). Typical
values are 7 and 10.

6www.cl.cam.ac.uk/˜fh295/simlex.html
7code.google.com/p/word2vec/source/

browse/trunk/demo-train-big-model-v1.sh

which employs the word2phrase tool (Mikolov
et al., 2013c) to merge common word pairs and
triples to expression tokens. Our corpus consists
of four datasets: (a) The 2012 and 2013 crawled
news articles from the ACL 2014 workshop on sta-
tistical machine translation (Bojar et al., 2014);8

(b) The One Billion Word Benchmark of Chelba
et al. (2013);9 (c) The UMBC corpus (Han et al.,
2013);10 and (d) The September 2014 dump of the
English Wikipedia.11

5.2 Baselines
We compare our model against six baselines: one
that encodes bag-of-words co-occurrence statistics
into its features (model 1 below), three NN models
that encode the same type of information into their
objective function (models 2-4), and two mod-
els that go beyond the bag-of-words assumption
(models 5-6). Unless stated otherwise, all models
are trained on our training corpus.

1. BOW. A simple model where each coordi-
nate corresponds to the co-occurrence count of the
represented word with another word in the train-
ing corpus. The resulted features are re-weighted
according to PPMI. The model’s window size pa-
rameter is tuned on the development set.12

2-3. word2vec. The state-of-the-art word2vec
toolkit (Mikolov et al., 2013a)13 offers two
word embedding architectures: continuous-bag-
of-words (CBOW) and skip-gram. We follow the
recommendations of the word2vec script for set-
ting the parameters of both models, and tune the
window size on the development set.14

4. GloVe. GloVe (Pennington et al., 2014)15 is
a global log-bilinear regression model for word
embedding generation, which trains only on the
nonzero elements in a co-occurrence matrix. We
use the parameters suggested by the authors, and
tune the window size on the development set.16

8http://www.statmt.org/wmt14/training-
monolingual-news-crawl/

9http://www.statmt.org/lm-benchmark/
1-billion-word-language-modeling-
benchmark-r13output.tar.gz

10http://ebiquity.umbc.edu/redirect/to/
resource/id/351/UMBC-webbase-corpus

11dumps.wikimedia.org/enwiki/latest/
enwiki-latest-pages-articles.xml.bz2

12The value 2 is almost constantly selected.
13https://code.google.com/p/word2vec/
14Window size 2 is generally selected for both models.
15nlp.stanford.edu/projects/glove/
16Window size 2 is generally selected.



5. NNSE. The NNSE model (Murphy et al.,
2012). As no full implementation of this model
is available online, we use the off-the-shelf em-
beddings available at the authors’ website,17 tak-
ing the full document and dependency model with
2500 dimensions. Embeddings were computed us-
ing a dataset about twice as big as our corpus.

6. Dep. The modified, dependency-based, skip-
gram model (Levy and Goldberg, 2014). To gen-
erate dependency links, we use the Stanford POS
Tagger (Toutanova et al., 2003)18 and the MALT
parser (Nivre et al., 2006).19 We follow the pa-
rameters suggested by the authors.

5.3 Evaluation

For evaluation we follow the standard VSM litera-
ture: the score assigned to each pair of words by a
model m is the cosine similarity between the vec-
tors induced bym for the participating words. m’s
quality is evaluated by computing the Spearman
correlation coefficient score (ρ) between the rank-
ing derived from m’s scores and the one derived
from the human scores.

6 Results

Main Result. Table 2 presents our results. Our
model outperforms the baselines by a margin of
5.5–16.7% in the Spearman’s correlation coeffi-
cient (ρ). Note that the capability of our model to
control antonym representation has a substantial
impact, boosting its performance from ρ = 0.434
when the antonym parameter is turned off to ρ =
0.517 when it is turned on.

Model Combination. We turn to explore
whether our pattern-based model and our best
baseline, skip-gram, which implements a bag-of-
words approach, can be combined to provide an
improved predictive power.

For each pair of words in the test set, we take a
linear combination of the cosine similarity score
computed using our embeddings and the score
computed using the skip-gram (SG) embeddings:
f+(wi, wj) = γ·fSP (wi, wj)+(1−γ)·fSG(wi, wj)

In this equation f<m>(wi, wj) is the cosine
similarity between the vector representations of
words wi and wj according to model m, and γ is a

17http://www.cs.cmu.edu/˜bmurphy/NNSE/
18nlp.stanford.edu/software/
19http://www.maltparser.org/index.html

Model Spearman’s ρ
GloVe 0.35
BOW 0.423

CBOW 0.43
Dep 0.436

NNSE 0.455
skip-gram 0.462

SP(−) 0.434
SP(+) 0.517

Joint (SP(+), skip-gram) 0.563
Average Human Score 0.651

Table 2:
Spearman’s ρ scores of our SP-based model with the antonym
parameter turned on (SP(+)) or off (SP(−)) and of the base-
lines described in Section 5.2. Joint (SP(+), skip-gram) is
an interpolation of the scores produced by skip-gram and our
SP(+) model. Average Human Score is the average correla-
tion of a single annotator with the average score of all anno-
tators, taken from (Hill et al., 2014).

weighting parameter tuned on the development set
(a common value is 0.8).

As shown in Table 2, this combination forms the
top performing model on SimLex999, achieving a
Spearman’s ρ score of 0.563. This score is 4.6%
higher than the score of our model, and a 10.1–
21.3% improvement compared to the baselines.

wordsim353 Experiments. The wordsim353
dataset (Finkelstein et al., 2001) is frequently used
for evaluating word representations. In order to
be compatible with previous work, we experiment
with this dataset as well. As our word embeddings
are designed to support word similarity rather than
relatedness, we focus on the similarity subset of
this dataset, according to the division presented in
(Agirre et al., 2009).

As noted by (Hill et al., 2014), the word pair
scores in both subsets of wordsim353 reflect word
association. This is because the two subsets cre-
ated by (Agirre et al., 2009) keep the original
wordsim353 scores, produced by human evalua-
tors that were instructed to score according to as-
sociation rather than similarity. Consequently, we
expect our model to perform worse on this dataset
compared to a dataset, such as SimLex999, whose
annotators were guided to score word pairs ac-
cording to similarity.

Contrary to SimLex999, wordsim353 treats
antonyms as similar. For example, the similarity
score of the (life,death) and (profit,loss) pairs are
7.88 and 7.63 respectively, on a 0-10 scale. Con-
sequently, we turn the antonym parameter off for
this experiment.

Table 3 presents the results. As expected, our



Model Spearman’s ρ
GloVe 0.677
Dep 0.712

BOW 0.729
CBOW 0.734
NNSE 0.78

skip-gram 0.792
SP(−) 0.728

Average Human Score 0.756

Table 3:
Spearman’s ρ scores for the similarity portion of wordsim353
(Agirre et al., 2009). SP(−) is our model with the antonym
parameter turned off. Other abbreviations are as in Table 2.

Model Adj. Nouns Verbs
GloVe 0.571 0.377 0.163
Dep 0.54 0.449 0.376

BOW 0.548 0.451 0.276
CBOW 0.579 0.48 0.252
NNSE 0.594 0.487 0.318

skip-gram 0.604 0.501 0.307

SP(+) 0.663 0.497 0.578

Table 4:
A POS-based analysis of the various models. Numbers are
the Spearman’s ρ scores of each model on each of the respec-
tive portions of SimLex999.

model is not as successful on a dataset that doesn’t
reflect pure similarity. Yet, it still crosses the ρ =
0.7 score, a quite high performance level.

Part-of-Speech Analysis. We next perform a
POS-based evaluation of the participating models,
using the three portions of the SimLex999: 666
pairs of nouns, 222 pairs of verbs, and 111 pairs of
adjectives. Table 4 indicates that our SP(+) model
is exceptionally successful in predicting verb and
adjective similarity. On verbs, SP(+) obtains a
score of ρ = 0.578, a 20.2–41.5% improvement
over the baselines. On adjectives, SP(+) performs
even better (ρ = 0.663), an improvement of 5.9–
12.3% over the baselines. On nouns, SP(+) is
second only to skip-gram, though with very small
margin (0.497 vs. 0.501), and is outperforming the
other baselines by 1–12%. The lower performance
of our model on nouns might partially explain its
relatively low performance on wordsim353, which
is composed exclusively of nouns.

Analysis of Antonyms. We now turn to a qual-
itative analysis, in order to understand the im-
pact of our modeling decisions on the scores of
antonym word pairs. Table 5 presents examples of
antonym pairs taken from the SimLex999 dataset,
along with their relative ranking among all pairs
in the set, as judged by our model (SP(+) with
β = 10 or SP(−) with β = −1) and by the best

Pair of Words SP skip-gram+AN -AN
new - old 1 6 6

narrow - wide 1 7 8
necessary - unnecessary 2 2 9

bottom - top 3 8 10
absence - presence 4 7 9

receive - send 1 9 8
fail - succeed 1 8 6

Table 5:
Examples of antonym pairs and their decile in the similarity
ranking of our SP model with the antonym parameter turned
on (+AN, β=10) or off (-AN, β=-1), and of the skip-gram
model, the best baseline. All examples are judged in the low-
est decile (1) by SimLex999’s annotators.

baseline representation (skip-gram). Each pair of
words is assigned a score between 1 and 10 by
each model, where a score of M means that the
pair is ranked at the M ’th decile. The examples
in the table are taken from the first (lowest) decile
according to SimLex999’s human evaluators. The
table shows that when the antonym parameter is
off, our model generally recognizes antonyms as
similar. In contrast, when the parameter is on,
ranks of antonyms substantially decrease.

Antonymy as Word Analogy. One of the most
notable features of the skip-gram model is that
some geometric relations between its vectors
translate to semantic relations between the repre-
sented words (Mikolov et al., 2013c), e.g.:

vwoman − vman + vking ≈ vqueen
It is therefore possible that a similar method can
be applied to capture antonymy – a useful property
that our model was demonstrated to have.

To test this hypothesis, we generated a set of
200 analogy questions of the form ”X - Y + Z =
?” where X and Y are antonyms, and Z is a word
with an unknown antonym.20 Example questions
include: “stupid - smart + life = ?” (death) and
“huge - tiny + arrive = ?” (leave). We applied
the standard word analogy evaluation (Mikolov et
al., 2013c) on this dataset with the skip-gram em-
beddings, and found that results are quite poor:
3.5% accuracy (compared to an average 56% ac-
curacy this model obtains on a standard word anal-
ogy dataset (Mikolov et al., 2013a)). Given these
results, the question of whether skip-gram is capa-

20Two human annotators selected a list of potential
antonym pairs from SimLex999 and wordsim353. We took
the intersection of their selections (26 antonym pairs) and
randomly generated 200 analogy questions, each containing
two antonym pairs. The dataset can be found in www.cs.
huji.ac.il/˜roys02/papers/sp_embeddings/
antonymy_analogy_questions.zip



ble of accounting for antonyms remains open.

7 Conclusions

We presented a symmetric pattern based model for
word vector representation. On SimLex999, our
model is superior to six strong baselines, including
the state-of-the-art word2vec skip-gram model by
as much as 5.5–16.7% in Spearman’s ρ score. We
have shown that this gain is largely attributed to
the remarkably high performance of our model on
verbs, where it outperforms all baselines by 20.2–
41.5%. We further demonstrated the adaptabil-
ity of our model to antonym judgment specifica-
tions, and its complementary nature with respect
to word2vec.

In future work we intend to extend our pattern-
based word representation framework beyond
symmetric patterns. As discussed in Section 4,
other types of patterns have the potential to further
improve the expressive power of word vectors. A
particularly interesting challenge is to enhance our
pattern-based approach with bag-of-words infor-
mation, thus enjoying the provable advantages of
both frameworks.
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Abstract

State-of-the-art word embeddings, which are
often trained on bag-of-words (BOW) con-
texts, provide a high quality representation of
aspects of the semantics of nouns. However,
their quality decreases substantially for the
task of verb similarity prediction. In this paper
we show that using symmetric pattern contexts
(SPs, e.g., “X and Y”) improves word2vec
verb similarity performance by up to 15% and
is also instrumental in adjective similarity pre-
diction. The unsupervised SP contexts are
even superior to a variety of dependency con-
texts extracted using a supervised dependency
parser. Moreover, we observe that SPs and
dependency coordination contexts (Coor) cap-
ture a similar type of information, and demon-
strate that Coor contexts are superior to other
dependency contexts including the set of all
dependency contexts, although they are still
inferior to SPs. Finally, there are substantially
fewer SP contexts compared to alternative rep-
resentations, leading to a massive reduction in
training time. On an 8G words corpus and a 32
core machine, the SP model trains in 11 min-
utes, compared to 5 and 11 hours with BOW
and all dependency contexts, respectively.

1 Introduction

In recent years, vector space models (VSMs) have
become prominent in NLP. VSMs are often eval-
uated by measuring their ability to predict human
judgments of lexical semantic relations between
pairs of words, mostly association or similarity.
While many datasets for these tasks are limited to

pairs of nouns, the recent SimLex999 word similar-
ity dataset (Hill et al., 2014) also consists of sim-
ilarity scores for verb and adjective pairs. State-of-
the-art VSMs such as word2vec skip-gram (w2v-SG,
(Mikolov et al., 2013a)) and GloVe (Pennington et
al., 2014) excel at noun-related tasks. However, their
performance substantially decreases on verb similar-
ity prediction in SimLex999, and their adjective rep-
resentations have rarely been evaluated (Section 2).

In this paper we show that a key factor in the re-
duced performance of the w2v-SG model on verb
representation is its reliance on bag-of-words (BOW)
contexts: contexts of the represented words that con-
sist of words in their physical proximity. We investi-
gate a number of alternative contexts for this model,
including various dependency contexts, and show
that simple, automatically acquired symmetric pat-
terns (SPs, e.g., “X or Y”, (Hearst, 1992; Davidov
and Rappoport, 2006)) are the most useful contexts
for the representation of verbs and also adjectives.
Moreover, the SP-based model is much more com-
pact than the alternatives, making its training an or-
der of magnitude faster.

In particular, we train several versions of the w2v-
SG model, each with a different context type, and
evaluate the resulting word embeddings on the task
of predicting the similarity scores of the verb and
adjective portions of SimLex999. Our results show
that SP contexts (SG-SP) obtain the best results on
both tasks: Spearman’s ρ scores of 0.459 on verbs
and 0.651 on adjectives. These results are 15.2%
and 4.7% better than BOW contexts and 7.3% and
6.5% better than all dependency contexts (DepAll).
Moreover, the number of SP contexts is substantially



smaller than the alternatives, making it extremely
fast to train: 11 minutes only on an 8G word cor-
pus using a 32 CPU core machine, compared to 5
and 11 hours for BOW and DepAll, respectively.

Recently, Schwartz et al. (2015) presented a
count-based VSM that utilizes SP contexts (SRR15).
This model excels on verb similarity, outperform-
ing VSMs that use other contexts (e.g., BOW and
DepAll) by more than 20%. In this paper we show
that apart from its SP contexts, the success of SRR15
is attributed in large to its explicit representation of
antonyms (live/die); turning this feature off reduces
its performance to be on par with SG-SP. As op-
posed to Schwartz et al. (2015), we keep our VSM
fixed across experiments (w2v-SG), changing only
the context type. This allows us to attribute our im-
proved results to one factor: SP contexts.

We further observe that SP contexts are tightly
connected to syntactic coordination contexts (Coor,
Section 3). Following this observation, we compare
the w2v-SG model with three dependency-based
context types: (a) Coor contexts; (b) all dependency
links (DepAll); and (c) all dependency links exclud-
ing Coor links (CoorC).1 Our results show that
training with Coor contexts is superior to training
with the other context types, leading to improved
similarity prediction of 2.7-4.1% and 4.3-6.9% on
verbs and adjectives respectively.

These results demonstrate the prominence of
Coor contexts in verb and adjective representation:
these contexts are even better than their combination
with the rest of the dependency-based contexts (the
DepAll contexts). Nonetheless, although Coor con-
texts are extracted using a supervised dependency
parser, they are still inferior to SP contexts, extracted
automatically from plain text (Section 3), by 4.6%
and 2.2% for verb and adjective pairs.

2 Background

Word Embeddings for Verbs and Adjectives. A
number of evaluation sets consisting of word pairs
scored by humans for semantic relations (mostly as-
sociation and similarity) are in use for VSM evalua-
tion. These include: RG-65 (Rubenstein and Good-
enough, 1965), MC-30 (Miller and Charles, 1991),
WordSim353 (Finkelstein et al., 2001), MEN (Bruni

1Coor ∪ CoorC = DepAll, Coor ∩ CoorC = ∅

et al., 2014) and SimLex999 (Hill et al., 2014).2

Nouns are dominant in almost all of these
datasets. For example, RG-65, MC-30 and Word-
Sim353 consist of noun pairs almost exclusively. A
few datasets contain pairs of verbs (Yang and Pow-
ers, 2006; Baker et al., 2014). The MEN dataset, al-
though dominated by nouns, also contains verbs and
adjectives. Nonetheless, the human judgment scores
in these datasets reflect relatedness between words.
In contrast, the recent SimLex999 dataset (Hill et al.,
2014) contains word similarity scores for nouns (666
pairs), verbs (222 pairs) and adjectives (111 pairs).
We use this dataset to study the effect of context type
on VSM performance in a verb and adjective simi-
larity prediction task.

Context Type in Word Embeddings. Most
VSMs (e.g., (Collobert et al., 2011; Mikolov et al.,
2013b; Pennington et al., 2014)) define the context
of a target word to be the words in its physical prox-
imity (bag-of-words contexts). Dependency con-
texts, consisting of the words connected to the tar-
get word by dependency links (Grefenstette, 1994;
Padó and Lapata, 2007; Levy and Goldberg, 2014),
are another well researched alternative. These works
did not recognize the importance of syntactic coor-
dination contexts (Coor).

Patterns have also been suggested as VSM con-
texts, but mostly for representing pairs of words
(Turney, 2006; Turney, 2008). While this approach
has been successful for extracting various types of
word relations, using patterns to represent single
words is useful for downstream applications. Re-
cently, Schwartz et al. (2015) explored the value of
symmetric pattern contexts for word representation,
an idea this paper develops further.

A recently published approach (Melamud et al.,
2016) also explored the effect of the type of con-
text on the performance of word embedding models.
Nonetheless, while they also explored bag-of-words
and dependency contexts, they did not experiment
with SPs or coordination contexts, which we find to
be most useful for predicting word similarity.

Limitations of Word Embeddings. Recently, a
few papers examined the limitations of word em-
bedding models in representing different types of se-

2For a comprehensive list see: wordvectors.org/



mantic information. Levy et al. (2015) showed that
word embeddings do not capture semantic relations
such as hyponymy and entailment. Rubinstein et
al. (2015) showed that while state-of-the-art embed-
dings are successful at capturing taxonomic infor-
mation (e.g., cow is an animal), they are much less
successful in capturing attributive properties (ba-
nanas are yellow). In (Schwartz et al., 2015), we
showed that word embeddings are unable to distin-
guish between pairs of words with opposite mean-
ings (antonyms, e.g., good/bad). In this paper we
study the difficulties of bag-of-words based word
embeddings in representing verb similarity.

3 Symmetric Patterns (SPs)

Lexico-syntactic patterns are templates of text that
contain both words and wildcards (Hearst, 1992),
e.g., “X and Y” and “X for a Y”. Pattern instances
are sequences of words that match a given pattern,
such that concrete words replace each of the wild-
cards. For example, “John and Mary” is an instance
of the pattern “X and Y”. Patterns have been shown
useful for a range of tasks, including word relation
extraction (Lin et al., 2003; Davidov et al., 2007),
knowledge extraction (Etzioni et al., 2005), senti-
ment analysis (Davidov et al., 2010) and authorship
attribution (Schwartz et al., 2013).

Symmetric patterns (SPs) are lexico-syntactic pat-
terns that comply to two constraints: (a) Each pat-
tern has exactly two wildcards (e.g., X or Y); and
(b) When two words (X,Y) co-occur in an SP, they
are also likely to co-occur in this pattern in oppo-
site positions, given a large enough corpus (e.g., “X
or Y” and “Y or X”). For example, the pattern “X
and Y” is symmetric as for a large number of word
pairs (e.g., (eat,drink)) both members are likely to
occur in both of its wildcard positions (e.g., “eat and
drink”, “drink and eat”).

SPs have shown useful for tasks such as word
clustering (Widdows and Dorow, 2002; Davidov
and Rappoport, 2006), semantic class learning
(Kozareva et al., 2008) and word classification
(Schwartz et al., 2014). In this paper we demonstrate
the value of SP-based contexts in vector representa-
tions of verbs and adjectives. The rationale behind
this context type is that two words that co-occur in
an SP tend to take the same semantic role in the sen-

tence, and are thus likely to be similar in meaning
(e.g., “(John and Mary) sang”).

SP Extraction. Many works that applied SPs in
NLP tasks employed a hand-crafted list of patterns
(Widdows and Dorow, 2002; Dorow et al., 2005;
Feng et al., 2013). Following Schwartz et al. (2015)
we employ the DR06 algorithm (Davidov and Rap-
poport, 2006), an unsupervised algorithm that ex-
tracts SPs from plain text. We apply this algorithm
to our corpus (Section 4) and extract 11 SPs: “X and
Y”, “X or Y”, “X and the Y”, “X or the Y”, “X or
a Y”, “X nor Y”, “X and one Y”, “either X or Y”,
“X rather than Y”, “X as well as Y”, “from X to Y”.
A description of the DR06 algorithm is beyond the
scope of this paper; the interested reader is referred
to (Davidov and Rappoport, 2006).

SP Contexts. We generate SP contexts by taking
the co-occurrence counts of pairs of words in SPs.
For example, in the SP token “boys and girls”, the
term girls is taken as an SP context of the word boys,
and boys is taken as an SP context of girls.

We do not make a distinction between the differ-
ent SPs. E.g., “boys and girls” and “boys or girls”
are treated the same. However, we distinguish be-
tween left and right contexts. For example, we gen-
erate different contexts for the word girls, one for
left-hand contexts (“girls and boys”) and another for
right-hand contexts (“boys and girls”).

SPs and Coordinations. SPs and syntactic coor-
dinations (Coors) are intimately related. For exam-
ple, of the 11 SPs extracted in this paper by the DR06
algorithm (listed above), the first eight represent co-
ordination structures. Moreover, these SPs account
for more than 98% of the SP instances in our corpus.
Indeed, due to the significant overlap between SPs
and Coors, the former have been proposed as a sim-
ple model of the latter (Nakov and Hearst, 2005).3

Despite their tight connection, SPs sometimes
fail to properly identify the components of Coors.
For example, while SPs are instrumental in captur-
ing shallow Coors, they fail in capturing coordina-
tion between phrases. Consider the sentence John

3Note though that the exact syntactic annotation of coordi-
nation is debatable both in the linguistic community (Tesnière,
1959; Hudson, 1980; Mel’čuk, 1988) and also in the NLP com-
munity (Nilsson et al., 2006; Schwartz et al., 2011; Schwartz et
al., 2012).



walked and Mary ran: the SP “X and Y” captures
the phrase walked and Mary, while the Coor links
the heads of the connected phrases (“walked” and
“ran”). SPs, on the other hand, can go beyond Coors
and capture other types of symmetric structures like
“from X to Y” and “X rather than Y”.

Our experiments reveal that both SPs and Coors
are highly useful contexts for verb and adjective rep-
resentation, at least with respect to word similarity.
Interestingly, Coor contexts, extracted using a super-
vised dependency parser, are less effective than SP
contexts, which are extracted from plain text.

4 Experiments

Model. We keep the VSM fixed throughout our
experiments, changing only the context type. This
methodology allows us to evaluate the impact of dif-
ferent contexts on the VSM performance, as context
choice is the only modeling decision that changes
across experimental conditions.

Our VSM is the word2vec skip-gram model (w2v-
SG, Mikolov et al. (2013a)), which obtains state-of-
the-art results on a variety of NLP tasks (Baroni et
al., 2014). We employ the word2vec toolkit.4 For all
context types other than BOW we use the word2vec
package of (Levy and Goldberg, 2014),5 which aug-
ments the standard word2vec toolkit with code that
allows arbitrary context definition.

Experimental Setup. We experiment with the
verb pair (222 pairs) and adjective pair (111 pairs)
portions of SimLex999 (Hill et al., 2014). We re-
port the Spearman ρ correlation between the ranks
derived from the scores of the evaluated models and
the human scores provided in SimLex999.6

We train the w2v-SG model with five different
context types: (a) BOW contexts (SG-BOW); (b)
all dependency links (SG-DepAll) (c) dependency-
based coordination contexts (i.e., those labeled with
conj, SG-Coor); (d) all dependency links except
for coordinations (SG-CoorC); and (e) SP contexts.
Our training corpus is the 8G words corpus gener-

4https://code.google.com/p/word2vec/
5https://bitbucket.org/yoavgo/word2vecf
6Model scores are computed in the standard way: applying

the cosine similarity metric to the vectors learned for the words
participating in the pair.

Model Verb Adj. Noun Time #Cont.
SG-BOW 0.307 0.604 0.501 320 13G

SG-DepAll 0.386 0.586 0.499 551 14.5G
SG-Coor 0.413 0.629 0.428 23 550M

SG-CoorC 0.372 0.56 0.494 677 14G
SG-SP 0.459 0.651 0.415 11 270M

SRR15 0.578 0.663 0.497 — 270M
SRR15− 0.441 0.68 0.421 — 270M

Table 1:
Spearman’s ρ scores on the different portions of
SimLex999. The top part presents results for the
word2vec skip-gram model (w2v-SG) with various
context types (see text). The bottom lines present
the results of the count SP-based model of Schwartz
et al. (2015), with (SRR15) and without (SRR15−)
its antonym detection method. The two rightmost
columns present the run time of the w2v-SG mod-
els in minutes (Time) and the number of context in-
stances used by the model (#Cont.).10 For each Sim-
Lex999 portion, the score of the best w2v-SG model
across context types is highlighted in bold font.

ated by the word2vec script.7

Models (b)-(d) require the dependency parse trees
of the corpus as input. To generate these trees, we
employ the Stanford POS Tagger (Toutanova et al.,
2003)8 and the stack version of the MALT parser
(Nivre et al., 2009).9 The SP contexts are generated
using the SPs extracted by the DR06 algorithm from
our training corpus (see Section 3).

For BOW contexts, we experiment with three win-
dow sizes (2, 5 and 10) and report the best results
(window size of 2 across conditions). For depen-
dency based contexts we follow the standard con-
vention in the literature: we consider the immedi-
ate heads and modifiers of the represented word.
All models are trained with 500 dimensions, the de-
fault value of the word2vec script. Other hyper-
parameters were also set to the default values of the
code packages.

Results. Table 1 presents our results. The SG-SP
model provides the most useful verb and adjective
representations among the w2v-SG models. Com-
pared to BOW (SG-BOW), the most commonly used

7code.google.com/p/word2vec/source/
browse/trunk/demo-train-big-model-v1.sh

8nlp.stanford.edu/software/tagger.shtml
9http://www.maltparser.org/index.html



context type, SG-SP results are 15.2% and 4.7%
higher on verbs and adjectives respectively. Com-
pared to dependency links (SG-DepAll), the im-
provements are 7.3% and 6.5%. For completeness,
we compare the models on the noun pairs portion,
observing that SG-BOW and SG-DepAll are∼8.5%
better than SG-SP. This indicates that different word
classes require different representations.

The results for SG-Coor, which is trained with
syntactic coordination (Coor) contexts, show that
these contexts are superior to all the other depen-
dency links (SG-CoorC) by 4.1% and 6.9% on verbs
and adjectives. Importantly, comparing the SG-
Coor model to the SG-DepAll model, which aug-
ments the Coor contexts with the other syntactic de-
pendency contexts, reveals that SG-DepAll is ac-
tually inferior by 2.7% and 4.3% in Spearman ρ
on verbs and adjectives respectively. Interestingly,
Coor contexts, which are extracted using a super-
vised parser, are still inferior by 4.6% and 2.2% to
SPs, which capture similar contexts but are extracted
from plain text.

Table 1 also shows the training times of the vari-
ous w2v-SG models on a 32G memory, 32 CPU core
machine. SG-SP and SG-Coor, which take 11 min-
utes and 23 minutes respectively to train, are sub-
stantially faster than the other w2v-SG models. For
example, they are more than an order of magnitude
faster than SG-BOW (320 minutes) and SG-CoorC

(677 minutes). This is not surprising, as there are
far fewer SP contexts (270M) and Coor contexts
(550M) than BOW contexts (13G) and CoorC con-
texts (14G) (#Cont. column).

Finally, the performance of the SG-SP model is
still substantially inferior to the SRR15 SP-based
model (Schwartz et al., 2015). As both models use
the same SP contexts, this result indicates that other
modeling decisions in SRR15 lead to its superior
performance. We show that this difference is mostly
attributed to one feature of SRR15: its method for
detecting antonym pairs (good/bad). Indeed, the
SRR15 model without its antonym detection method
(SRR15−) obtains a Spearman ρ of 0.441, compared
to 0.459 of SG-SP on verb pairs. For adjectives,
however, SRR15− is 1.7% better than SRR15, in-

10We compare the w2v-SG models training time only. SRR15
and SRR15− are count-based models and have no training step.

creasing the difference from SG-SP to 2.9%.11

5 Conclusions

We demonstrated the effectiveness of symmetric
pattern contexts in word embedding induction. Ex-
periments with the word2vec model showed that
these contexts are superior to various alternatives
for verb and adjective representation. We further
pointed at the connection between symmetric pat-
terns and syntactic coordinations. We showed that
coordinations are superior to other syntactic con-
texts, but are still inferior to symmetric patterns, al-
though the extraction of symmetric patterns requires
less supervision.

Future work includes developing a model that
successfully combines the various context types ex-
plored in this paper. We are also interested in
the representation of other word classes such as
adverbs for which no evaluation set currently ex-
ists. Finally, the code for generating the SG-SP
embeddings, as well as the vectors experimented
with in this paper, are released and can be down-
loaded from http://www.cs.huji.ac.il/
∼roys02/papers/sp_sg/sp_sg.html
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Abstract

Work on authorship attribution has tradition-
ally focused on long texts. In this work, we
tackle the question of whether the author of
a very short text can be successfully iden-
tified. We use Twitter as an experimental
testbed. We introduce the concept of an au-
thor’s unique “signature”, and show that such
signatures are typical of many authors when
writing very short texts. We also present a new
authorship attribution feature (“flexible pat-
terns”) and demonstrate a significant improve-
ment over our baselines. Our results show that
the author of a single tweet can be identified
with good accuracy in an array of flavors of
the authorship attribution task.

1 Introduction

Research in authorship attribution has developed
substantially over the last decade (Stamatatos,
2009). The vast majority of such research has been
dedicated towards finding the author of long texts,
ranging from single passages to book chapters. In
recent years, the growing popularity of social me-
dia has created special interest, both theoretical and
computational, in short texts. This has led to many
recent authorship attribution projects that experi-
mented with web data such as emails (Abbasi and
Chen, 2008), web forum messages (Solorio et al.,
2011) and blogs (Koppel et al., 2011b). This paper
addresses the question to what extent the authors of
very short texts can be identified. To answer this
question, we experiment with Twitter tweets.

Twitter messages (tweets) are limited to 140 char-
acters. This restriction imposes major difficulties on

authorship attribution systems, since authorship at-
tribution methods that work well on long texts are
often not as useful when applied to short texts (Bur-
rows, 2002; Sanderson and Guenter, 2006).

Nonetheless, tweets are relatively self-contained
and have smaller sentence length variance com-
pared to excerpts from longer texts (see Section 3).
These characteristics make Twitter data appealing as
a testbed when focusing on short texts. Moreover,
an authorship attribution system of tweets may have
various applications. Specifically, a range of cyber-
crimes can be addressed using such a system, includ-
ing identity fraud and phishing.

In this paper, we introduce the concept of k-
signatures. We denote the k-signatures of an author
a as the features that appear in at least k% of a’s
training samples, while not appearing in the training
set of any other author. When k is large, such signa-
tures capture a unique style used by a. An analysis
of our training set reveals that unique k-signatures
are typical of many authors. Moreover, a substantial
portion of the tweets in our training set contain at
least one such signature. These findings suggest that
a single tweet, although short and sparse, often con-
tains sufficient information for identifying its author.
Our results show that this is indeed the case.

We train an SVM classifier with a set of features
that include character n-grams and word n-grams.
We use a rigorous experimental setup, with varying
number of authors (values between 50-1,000) and
various sizes of the training set, ranging from 50 to
1,000 tweets per author. In all our experiments, a
single tweet is used as test document. We also use
a setting in which the system is allowed to respond
don’t know in cases of uncertainty. Applying this
option results in higher precision, at the expense of



lower recall.
Our results show that the author of a tweet can be

successfully identified. For example, when using a
dataset of as many as 1,000 authors with 200 train-
ing tweets per author, we are able to obtain 30.3%
accuracy (as opposed to a random baseline of only
0.1%). Using a dataset of 50 authors with as few
as 50 training tweets per author, we obtain 50.7%
accuracy. Using a dataset of 50 authors with 1,000
training tweets per author, our results reach as high
as 71.2% in the standard classification setting, and
exceed 91% accuracy with 60% recall in the don’t
know setting.

We also apply a new set of features, never previ-
ously used for this task – flexible patterns. Flexi-
ble patterns essentially capture the context in which
function words are used. The effectiveness of func-
tion words as authorship attribution features (Koppel
et al., 2009) suggests using flexible pattern features.
The fact that flexible patterns are learned from plain
text in a fully unsupervised manner makes them
domain and language independent. We demon-
strate that using flexible patterns gives significant
improvement over our baseline system. Further-
more, using flexible patterns, our system obtains a
6.1% improvement over current state-of-the-art re-
sults in authorship attribution on Twitter.

To summarize, the contribution of this paper is
threefold.

• We provide the most extensive research to date
on authorship attribution of micro-messages,
and show that authors of very short texts can
be successfully identified.

• We introduce the concept of an author’s unique
k-signature, and demonstrate that such signa-
tures are used by many authors in their writing
of micro-messages.

• We present a new feature for authorship attri-
bution – flexible patterns – and show its sig-
nificant added value over other methods. Us-
ing this feature, our system obtains a 6.1% im-
provement over the current state-of-the-art.

The rest of the paper is organized as follows. Sec-
tions 2 and 3 describe our methods and our experi-
mental testbed (Twitter). Section 4 presents the con-
cept of k-signatures. Sections 5 and 6 present our

experiments and results. Flexible patterns are pre-
sented in Section 7 and related work is presented in
Section 8.

2 Methodology

In the following we briefly describe the main fea-
tures employed by our system. The features below
are binary features.

Character n-grams. Character n-gram features
are especially useful for authorship attribution on
micro-messages since they are relatively tolerant
to typos and non-standard use of punctuation (Sta-
matatos, 2009). These are common in the non-
formal style generally applied in social media ser-
vices. Consider the example of misspelling “Brit-
ney” as “Brittney”. The misspelled name shares the
4-grams “Brit” and “tney” with the correct name. As
a result, these features provide information about the
author’s style (or at least her topic of interest), which
is not available through lexical features.

Following standard practice, we use 4-grams
(Sanderson and Guenter, 2006; Layton et al., 2010;
Koppel et al., 2011b). White spaces are considered
characters (i.e., a character n-gram may be com-
posed of letters from two different words). A sin-
gle white-space is appended to the beginning and
the end of each tweet. For efficiency, we consider
only character n-gram features that appear at least
tcng times in the training set of at least one author
(see Section 5).

Word n-grams. We hypothesize that word n-gram
features would be useful for authorship attribution
on micro-messages. We assume that under a strict
length restriction, many authors would prefer using
short, repeating phrases (word n-grams).

In our experiments, we consider 2 ≤ n ≤ 5.1

We regard sequences of punctuation marks as words.
Two special words are added to each tweet to indi-
cate the beginning and the end of the tweet. For effi-
ciency, we consider only word n-gram features that
appear at least twng times in the training set of at
least one author (see Section 5).

Model. We use libsvm’s Matlab implementation
of a multi-class SVM classifier with a linear kernel

1We skip unigrams as they are generally captured by the
character n-gram features.



(Chang and Lin, 2011). We use ten-fold cross vali-
dation on the training set to select the best regular-
ization factor between 0.5 and 0.005.2

3 Experimental Testbed

Our main research question in this paper is to deter-
mine the extent to which authors of very short texts
can be identified. A major issue in working with
short texts is selecting the right dataset. One ap-
proach is breaking longer texts into shorter chunks
(Sanderson and Guenter, 2006). We take a differ-
ent approach and experiment with micro-messages
(specifically, tweets).

Tweets have several properties making them an
ideal testbed for authorship attribution of short texts.
First, tweets are posted as single units and do not
necessarily refer to each other. As a result, they tend
to be self contained. Second, tweets have more stan-
dardized length distribution compared to other types
of web data. We compared the mean and standard
deviation of sentence length in our Twitter dataset
and in a corpus of English web data (Ferraresi et al.,
2008).3 We found that (a) tweets are shorter than
standard web data (14.2 words compared to 20.9),
and (b) the standard deviation of the length of tweets
is much smaller (6.4 vs. 21.4).

Pre-Processing. We use a Twitter corpus that in-
cludes approximately 5 × 108 tweets.4 All non-
English tweets and tweets that contain fewer than
3 words are removed from the dataset. We also re-
move tweets marked as retweets (using the RT sign,
a standard Twitter symbol to indicate that this tweet
was written by a different user). As some users
retweet without using the RT sign, we also remove
tweets that are an exact copy of an existing tweet
posted in the previous seven days.

Apart from plain text, some tweets contain ref-
erences to other Twitter users (in the format of
@<user>). Since using reference information
makes this task substantially easier (Layton et al.,
2010), we replace each user reference with the spe-
cial meta tag REF. For sparsity reasons, we also re-
place web addresses with the meta tag URL, num-

2In practice, 0.05 or 0.1 are selected in almost all cases.
3http://wacky.sslmit.unibo.it
4These comprise ∼15% of all public tweets created from

May 2009 to March 2010.
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Figure 1: Number of users with at least x k-signatures
(100 authors, 180 training tweets per author).

bers with the meta tag NUM, time of day with the
meta tag TIME and dates with the meta tag DATE.

4 k-Signatures

In this section, we show that many authors adopt
a unique style when writing micro-messages. This
style can be detected by a strong classification algo-
rithm (such as SVM), and be sufficient to correctly
identify the author of a single tweet.

We define the concept of the k-signature of an au-
thor a to be a feature that appears in at least k% of
a’s training set, while not appearing in the training
set of any other user. Such signatures can be useful
for identifying future (unlabeled) tweets written by
a.

To validate our hypothesis, we use a dataset of
100 authors with 180 tweets per author. We com-
pute the number of k-signatures used by each of
the authors in our dataset. Figure 1 shows our re-
sults for a range of k values (2%, 5%, 10%, 20%
and 50%). Results demonstrate that 81 users use
at least one 2%-signature, 43 users use at least one
5%-signature, and 17 users use at least one 10%-
signature. These results indicate that a large portion
of the users adopt a unique signature (or set of sig-
natures) when writing short texts. Table 1 provides
examples of 10%-signatures.



Signature Type 10%-signature Examples

Character n-grams

‘ ˆ ˆ’
REF oh ok ˆ ˆ Glad you found it!
Hope everyone is having a good afternoon ˆ ˆ
REF Smirnoff lol keeping the goose in the freezer ˆ ˆ

‘yew ’
gurl yew serving me tea nooch
REF about wen yew and ronnie see each other
REF lol so yew goin to check out tini’s tonight huh???

Word n-grams

.. lal
REF aww those are cool where u get those.. how do ppl react.. lal
Ludas album is gone be hott.. lal
Dayum refs don’t get injury timeouts.. lal.. get him off the field..

smoochies , e3

I’m just back after takin’ a very long, icy cold
shower........Shivering smoochies,E3 http://bit.ly/4CzzP9
A blue stout or two would be nice as well, Purr!Blue smooth
smoochies,E3 http://bit.ly/75D4fO
That is sooooooooooooooooooo unfair!Double smoochies,E3
http://bit.ly/07sXRGX

Table 1: Examples of 10%-signatures.

Results also show that seven users use one or
more 20%-signatures, and five users even use one
or more 50%-signatures. Looking carefully at these
users, we find that they write very structured mes-
sages, and are probably bots, such as news feeds,
bidding systems, etc. Table 2 provides examples of
tweets posted by such users.5

Another interesting question is how many tweets
contain at least one k-signature. Figure 2 shows
for each user the number of tweets in her training
set for which at least one k-signature is found. Re-
sults demonstrate that a total of 18.6% of the train-
ing tweets contain at least one 2%-signature, 10.3%
the training tweets contain at least one 5%-signature
and 6.5% of the training tweets contain at least one
10%-signature. These findings validate our assump-
tion that many users use k-signatures in short texts.

These findings also have direct implications on
authorship attribution of micro-messages, since k-
signatures are reliable classification features. As
a result, texts written by authors that tend to use
k-signatures are likely to be easily identified by a
reasonable classification algorithm. Consequently,
k-signatures provide a possible explanation for the
high quality results presented in this paper.

In the broader context, the presence (and contri-

5Our k-signature method can actually be useful for automat-
ically identifying such users. We defer this to future work.

0 20 40 60 80 100 120 140 160 180
0

10

20

30

40

50

60

70

80

90

Number of Tweets with at least one k−Signature

N
um

be
r 

of
 U

se
rs

 

 
k = 2%
k = 5%
k = 10%
k = 20%
k = 50%

Figure 2: Number of users with at least x training tweets
that contain at least one k-signature (100 authors, 180
training tweets per author).

bution) of k-signatures is in line with the hypothesis
proposed by (Davidov et al., 2010a): while still us-
ing an informal and unstructured (grammatical) lan-
guage, authors tend to use typical and unique struc-
tures in order to allow a short message to stand alone
without a clear conversational context.



User 20%-signature Examples

1 I’m listening to :

I’m listening to: Sigur Rós ? Intro: http://www.last.fm/music/Sigur+Rós
http://bit.ly/3XJHyb
I’m listening to: Tina Arena ? In Command:
http://www.last.fm/music/Tina+Arena http://bit.ly/7q9E25
I’m listening to: Midnight Oil ? Under the Overpass:
http://www.last.fm/music/Midnight+Oil http://bit.ly/7IH4cg

2 news now ( str )

#Hotel News Now(STR) 5 things to know: 27 May 2009: From the desks of
the HotelNewsNow.com editor... http://bit.ly/aZTZOq #Tourism #Lodging
#Hotel News Now(STR) Five sales renegotiating tactics: As bookings rep-
resentatives press to reneg... http://bit.ly/bHPn2L
#Hotel News Now(STR) Risk of hotel recession retreats: The Hotel Indus-
try’s Pulse Index increases... http://bit.ly/a8EKrm #Tourism #Lodging

3
( NUM bids )
end date :

NEW PINK NINTENDO DS LITE CONSOLE WITH 21 GIFTS +
CASE: &#163;66.50 (13 Bids) End Date: Tuesday Dec-08-2009 17:..
http://bit.ly/7uPt6V
Microsoft Xbox 360 Game System - Console Only - Working: US $51.99
(25 Bids) End Date: Saturday Dec-12-2009 13:.. http://bit.ly/8VgdTv
Microsoft Sony Playstation 3 (80 GB) Console 6 Months Old:
&#163;190.00 (25 Bids) End Date: Sunday Dec-13-2009 21:21:39 G..
http://bit.ly/7kwtDS

Table 2: Examples of tweets published by very structured users, suspected to be bots, along with one of their 20%-
signatures.

5 Experiments

We report of three different experimental configu-
rations. In the experiments described below, each
dataset is divided into training and test sets using
ten-fold cross validation. On the test phase, each
document contains a single tweet.

Experimenting with varying Training Set Sizes.
In order to test the affect of the training set size,
we experiment with an increasingly larger number
of tweets per author. Experimenting with a range of
training set sizes serves two purposes: (a) to check
whether the author of a tweet can be identified us-
ing a very small number of (short) training samples,
and (b) check how much our system can benefit from
training on a larger corpus.

In our experiments we only consider users who
posted between 1,000–2,000 tweets6 (a total of

6This range is selected since on one hand we want at least
1,000 tweets per author for our experiments, and on the other
hand we noticed that users with a larger number of tweets in
corpus tend to be spammers or bots that are very easy to identify,
so we limit this number to 2,000.

10,183 users), and randomly select 1,000 tweets per
user. From these users, we select 10 groups of 50
users each.7 We perform a set of classification ex-
periments, selecting for each author an increasingly
larger subset of her 1,000 tweets as training set. Sub-
set sizes are (50, 100, 200, 500, 1,000). Thresh-
old values for our features in each setting (see Sec-
tion 2) are (2, 2, 4, 10, 20) for tcng and (2, 2, 2, 3, 5)
for twng, respectively.

Experimenting with varying Numbers of Au-
thors. In a second set of experiments, we use an
increasingly larger number of authors (values be-
tween 100-1,000), in order to check whether the au-
thor of a very short text can be identified in a “needle
in a haystack” type of setting.

Due to complexity issues, we only experiment
with 200 tweets per author as training set. We se-
lect groups of size 100, 200, 500 and 1,000 users
(one group per size). We use the same threshold val-
ues as the 200 tweets per author setting previously
described (tcng = 4, twng = 2).

7An eleventh group is selected as development set.
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Figure 3: Authorship attribution accuracy for 50 authors
with various training set sizes. The values are averaged
over 10 groups. The random baseline is 2%.

Recall-Precision Tradeoff. Another aspect of our
research question is the level of certainty our system
has when suggesting an author for a given tweet.
In cases of uncertainty, many real life applications
would prefer not to get any response instead of get-
ting a response with low certainty. Moreover, in real
life applications we are often not even sure that the
real author is part of our training set. Consequently,
we allow our system to respond “don’t know” in
cases of low confidence (Koppel et al., 2006; Kop-
pel et al., 2011b). This allows our system to obtain
higher precision, at the expense of lower recall.

To implement this feature, we use SVM’s proba-
bility estimates, as implemented in libsvm. These
estimates give a score to each potential author.
These scores reflect the probability that this author
is the correct author, as decided by the prediction
model. The selected author is always the one with
the highest probability estimate.

As selection criterion, we use a set of increasingly
larger thresholds (0.05-0.9) for the probability of the
selected author. This means that we do not select test
samples for which the selected author has a proba-
bility estimate value lower than the threshold.
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Figure 4: Authorship attribution accuracy with varying
number of candidate authors, using 200 training tweets
per author. The random baselines for 509, 100, 200, 500
and 1,000 authors are 2%, 1%, 0.5%, 0.2% and 0.1%,
respectively.

6 Basic Results

Experimenting with varying Training Set Sizes.
Figure 3 shows results for our experiments with
50 authors and various training set sizes. Results
demonstrate that authors of very short texts can be
successfully identified, even with as few as 50 tweets
per author (49.5%). When given more training sam-
ples, authors are identified much more accurately
(up to 69.7%). Results also show that, according to
our hypothesis, word n-gram features substantially
improve over character n-grams features only (3%
averaged improvement over all settings).

Experimenting with varying Numbers of Au-
thors. Figure 4 shows our results for various num-
bers of authors, using 200 tweets per author as train-
ing set. Results demonstrate that authors of an
unknown tweet can be identified to a large extent
even when there are as many as 1,000 candidate au-
thors (30.3%, as opposed to a random baseline of
only 0.1%). Results further validate that word n-
gram features substantially improve over character

9Results for 50 authors with 200 tweets per author are taken
from Figure 3.
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Figure 5: Recall-precision curves for 50 authors with
varying training set sizes.

n-grams features (2.6% averaged improvement).

Recall-Precision Tradeoff. Figure 5 shows the
recall-precision curves for our experiments with 50
authors and varying training set sizes. Results
demonstrate that we are able to obtain very high pre-
cision (over 90%) while still maintaining a relatively
high recall (from ∼35% recall for 50 tweets per au-
thor up to > 60% recall for 1,000 tweets per author).

Figure 6 shows the recall-precision curves for our
experiments with varying number of authors. Re-
sults demonstrate that even in the 1,000 authors set-
ting, we are able to obtain high precision values
(90% and 70%) with reasonable recall values (18%
and ∼30%, respectively).

7 Flexible Patterns

In previous sections we provided strong evidence
that authors of micro-messages can be successfully
identified using standard methods. In this section we
present a new feature, never previously used for this
task – flexible patterns. We show that flexible pat-
terns can be used to improve classification results.

Flexible patterns are a generalization of word n-
grams, in the sense that they capture potentially un-
seen word n-grams. As a result, flexible patterns
can pick up fine-grained differences between au-
thors’ styles. Unlike other types of pattern features,
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Figure 6: Recall-precision curves for varying number of
authors.

flexible patterns are computed automatically from
plain text. As such, they can be applied to various
tasks, independently of domain and language. We
describe them in detail.

Word Frequency. Flexible patterns are composed
of high frequency words (HFW) and content words
(CW). Every word in the corpus is defined as either
HFW or CW. This clustering is performed by count-
ing the number of times each word appears in the
corpus of size s. A word that appears more than
10−4×s times in a corpus is considered HFW. A
word that appears less than 10−3×s times in a cor-
pus is considered CW. Some words may serve both
as HFWs and CWs (see Davidov and Rappoport
(2008b) for discussion).

Structure of a Flexible Pattern. Flexible patterns
start and end with an HFW. A sequence of zero or
more CWs separates consecutive HFWs. At least
one CW must appear in every pattern.10 For effi-
ciency, at most six HFWs (and as a result, five CW
sequences) may appear in a flexible pattern. Exam-
ples of flexible patterns include

1. “theHFW CW ofHFW theHFW”

10Omitting this treats word n-grams as flexible patterns.



Flexible Pattern Features. Flexible patterns can
serve as binary classification features; a tweet
matches a given flexible pattern if it contains the
flexible pattern sequence. For example, (1) is
matched by (2).

2. “Go to theHFW houseCW ofHFW theHFW rising sun”

Partial Flexible Patterns. A flexible pattern may
appear in a given tweet with additional words not
originally found in the flexible pattern, and/or with
only a subset of the HFWs (Davidov et al., 2010a).
For example, (3) is a partial match of (1), since the
word “great” is not part of the original flexible pat-
tern. Similarly, (4) is another partial match of (1),
since (a) the word “good” is not part of the original
flexible pattern and (b) the second occurrence of the
word “the” does not appear in (4) (missing word is
marked by ).

3. “TheHFW greatHFW kingCW ofHFW theHFW ring”

4. “TheHFW goodHFW kingCW ofHFW Spain”

We use such cases as features with lower weight,
proportional to the number of found HFWs in the
tweet (w =

0.5×nfound

nexpected
). For example, (1) receives a

weight of 1 (complete match) against (2). Against
(3), it receives a weight of 0.5 (= 0.5×3

3 , partial
match with no missing HFWs). Against (4) it re-
ceives a weight of 1/3 (= 0.5×2

3 , partial match with
only 2/3 HFWs found).

Experimenting with Flexible Pattern Features.
We repeat our experiments with varying training set
sizes (see Section 5) with two more systems: one
that uses character n-grams and flexible pattern fea-
tures, and another that uses character n-grams, word
n-grams and flexible patterns. High frequency word
counts are computed separately for each author us-
ing her training set. We only consider flexible pat-
tern features that appear at least tfp times in the
training set of at least one author. Values of tfp for
training set sizes (50, 100, 200, 500, 1,000) are (2,
3, 7, 7, 8), respectively.

Results. Figure 7 shows our results. Results
demonstrate that flexible pattern features have an
added value over both character n-grams alone (av-
eraged 2.9% improvement) and over character n-
grams and word n-grams together (averaged 1.5%
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Figure 7: Authorship attribution accuracy for 50 authors
with various training set sizes and various feature sets.
The values are averaged over 10 groups. The random
baseline is 2%.
Comparison to previous work: SCAP – SCAP algo-
rithm results, as reported by (Layton et al., 2010), Naive
Bayes – Naive Bayes algorithm results, as reported by
(Boutwell, 2011).

improvement). We perform t-tests on each of our
training set sizes to check whether the latter im-
provement is significant. Results demonstrate that
it is highly significant in all settings, with p-values
smaller than values between 10−3 (for 50 tweets per
author) and 10−8 (1,000 tweets per author).

Comparison to Previous Works. Figure 7 also
shows results for the only two works that experi-
mented in some of the settings we experimented in:
Layton et al. (2010) and Boutwell (2011) (see Sec-
tion 8). Our system substantially outperforms these
two systems, by margins of 5.9% to 19%. These
margins are explained by the choice of algorithm
(SVM and not SCAP/naive Bayes) and our set of
features (character n-grams + word n-grams + flex-
ible patterns compared to character n-grams only).
In order to rule out the possibility that these mar-
gins stem from using different datasets, we tested
our system on the dataset used in (Layton et al.,
2010). Our system obtains even higher results on
this dataset than on our datasets (61.6%, a total im-



provement of 6.1% over (Layton et al., 2010)).

Discussion. To illustrate the additional contribu-
tion of flexible patterns over word n-grams, consider
the following tweets, written by the same author.

5. “. . . theHFW wayCW IHFW treatedCW herHFW”

6. “. . . half of theHFW thingsCW IHFW have seen”

7. “. . . theHFW friendsCW IHFW have had for years”

8. “. . . in theHFW neighborhoodCW IHFW grew up in”

Consider a case where (5) is part of the test set,
while (6-8) appear in the training set. As (5) shares
no sequence of words with (6-8), no word n-gram
feature is able to identify the author’s style in (5).
However, this style can be successfully identified us-
ing the flexible pattern (9), shared by (5-8).

9. theHFW CW IHFW

This demonstrates the added value flexible pattern
features have over word n-gram features.

8 Related Work

Authorship attribution dates back to the end of 19th
century, when (Mendenhall, 1887) applied sentence
length and word length features to plays of Shake-
speare. Ever since, many methods have been devel-
oped for this task. For recent surveys, see (Koppel
et al., 2009; Stamatatos, 2009; Juola, 2012).

Authorship attribution methods can be generally
divided into two categories (Stamatatos, 2009). In
similarity-based methods, an anonymous text is at-
tributed to some author whose writing style is most
similar (by some distance metric). In machine learn-
ing methods, which we follow in this paper, anony-
mous texts are classified, using machine learning al-
gorithms, into different categories (in this case, dif-
ferent authors).

Machine learning papers differ from each other by
the features and machine learning algorithm. Exam-
ples of features include HFWs (Mosteller and Wal-
lace, 1964; Argamon et al., 2007), character n-gram
(Kjell, 1994; Hoorn et al., 1999; Stamatatos, 2008),
word n-grams (Peng et al., 2004), part-of-speech
n-grams (Koppel and Schler, 2003; Koppel et al.,
2005) and vocabulary richness (Abbasi and Chen,
2005).

The various machine learning algorithms used in-
clude naive Bayes (Mosteller and Wallace, 1964;
Kjell, 1994), neural networks (Matthews and Mer-
riam, 1993; Kjell, 1994), K-nearest neighbors (Kjell
et al., 1995; Hoorn et al., 1999) and SVM (De Vel et
al., 2001; Diederich et al., 2003; Koppel and Schler,
2003).

Traditionally, authorship attribution systems have
mainly been evaluated against long texts such as
theater plays (Mendenhall, 1887), essays (Yule,
1939; Mosteller and Wallace, 1964), biblical books
(Mealand, 1995; Koppel et al., 2011a) and book
chapters (Argamon et al., 2007; Koppel et al., 2007).
In recent year, many works focused on web data
such as emails (De Vel et al., 2001; Koppel and
Schler, 2003; Abbasi and Chen, 2008), web forum
messages (Abbasi and Chen, 2005; Solorio et al.,
2011), blogs (Koppel et al., 2006; Koppel et al.,
2011b) and chat messages (Abbasi and Chen, 2008).
Some works focused on SMS messages (Mohan et
al., 2010; Ishihara, 2011).

Authorship Attribution on Twitter. The perfor-
mance of authorship attribution systems on short
texts is affected by several factors (Stamatatos,
2009). These factors include the number of candi-
date authors, the training set size and the size of the
test document.

Very few authorship attribution works experi-
mented with Twitter. Unlike our work, all used a
single group of authors (group sizes varied between
3-50). Layton et al. (2010) used the SCAP method-
ology (Frantzeskou et al., 2007) with character n-
gram features. They experimented with 50 authors
and compared different numbers of tweets per au-
thor (values between 20-200). Surprisingly, they
showed that their system does not improve when
given more training tweets. In our work, we no-
ticed a different trend, and showed that more data
can be extremely valuable for authorship attribution
systems on micro-messages (see Section 6). Silva
et al. (2011) trained an SVM classifier with various
features (e.g., punctuation and vocabulary features)
on a small dataset of three authors only, with vary-
ing training set size. Although their work used a
set of Twitter-specific features that we do not explic-
itly use, our features implicitly cover a large portion
of their features (such as punctuation and emoticon



features, which are largely covered by character n-
grams).

Boutwell (2011) used a naive Bayes classifier
with character n-gram features. She experimented
with 50 authors and two training size values (120
and 230). She also provided a set of experiments that
studied the effect of joining several tweets into a sin-
gle document. Mikros and Perifanos (2013) trained
an SVM classifier with character n-gram and word
n-grams. They experimented with 10 authors of
Greek text, and also joined several tweets into a sin-
gle document. Joining several tweets into a longer
document is appealing since it can lead to substantial
improvement of the classification results, as demon-
strated by the works above. However, this approach
requires the test data to contain several tweets that
are known a-priori to be written by the same author.
This assumption is not always realistic. In our paper,
we intentionally focus on a single tweet as document
size.

Flexible Patterns. Patterns were introduced by
(Hearst, 1992), who used hand crafted patterns
to discover hyponyms. Hard coded patterns
were used for many tasks, such as discovering
meronymy (Berland and Charniak, 1999), noun cat-
egories (Widdows and Dorow, 2002), verb relations
(Chklovski and Pantel, 2004) and semantic class
learning (Kozareva et al., 2008).

Patterns were first extracted in a fully unsuper-
vised manner (“flexible patterns”) by (Davidov and
Rappoport, 2006), who used flexible patterns in or-
der to establish noun categories, and (Biciçi and
Yuret, 2006) who used them for analogy question
answering. Ever since, flexible patterns were used
as features for various tasks such as extraction of
semantic relationships (Davidov et al., 2007; Tur-
ney, 2008b; Bollegala et al., 2009), detection of
synonyms (Turney, 2008a), disambiguation of nom-
inal compound relations (Davidov and Rappoport,
2008a), sentiment analysis (Davidov et al., 2010b)
and detection of sarcasm (Tsur et al., 2010).

9 Conclusion

The main goal of this paper is to measure to what
extent authors of micro-messages can be identified.
We have shown that authors of very short texts
can be successfully identified in an array of au-

thorship attribution settings reported for long doc-
uments. This is the first work on micro-messages
to address some of these settings. We introduced
the concept of k-signature. Using this concept, we
proposed an interpretation of our results. Last, we
presented the first authorship attribution system that
uses flexible patterns, and demonstrated that using
these features significantly improves over other sys-
tems. Our system obtains 6.1% improvement over
the current state-of-the-art.
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Chapter 6

Conclusions and Future Work

This dissertation focused on different aspects of lexical semantics. It demon-
strated the ability (or lack of ability) of state-of-the-art word embeddings
to capture these aspects, and showed that patterns can both serve as bet-
ter features for lexical semantic tasks, and be integrated into existing word
embeddings in order to improve their performance on other tasks.

I started by pointing out to a few limitations of leading word embeddings:

• Their difficulties in distinguishing between associated pairs of words
(money, bank) and similar pairs of words (money, cash).

• Their inability to distinguish between similar pairs of words (high, tall)
and opposite pairs of words (high, low).

• Their inferior performance on verb related tasks.

I then showed that lexico-syntactic patterns can serve as useful features
for lexical semantic tasks. I presented I-k-NN, a novel, minimally-supervised
variant of the k-Nearest-Neighbors algorithm (Chapter 2). I applied it with
symmetric pattern edge weights to a minimally supervised word classification
task. The model obtains an average 86% accuracy results on four classifica-
tion tasks, while requiring no more than two positive training examples.
These results are 16% and 22.5% higher than leading word embeddings.
Moreover, the novel I-k-NN algorithm turned out to be more effective than
state-of-the-art semi-supervised algorithms, obtaining substantial improve-
ments.

I then showed that patterns can be integrated into state-of-the-art word
embeddings, and result in a model that remedies the original models’ prob-
lems. In Chapter 3, I presented a co-occurrence count model that replaces
bag-of-word counts with symmetric pattern counts. The symmetric patterns
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contexts allowed the model to capture word similarity rather than related-
ness. In addition, this chapter introduced a pattern-based feature integrated
into the model, which allows it to distinguish between similar and opposite
words. In experimenting with the SimLex999 word similarity dataset (Hill
et al., 2015), the model obtained 5.5%-16.7% improvement compared to six
state-of-the-art models.

Moreover, the model presented in Chapter 3 is able to overcome the third
problem of leading word embeddings – their poor performance on verb related
tasks. Unlike these models, which suffer a large degradation in performance
when shifting from verbs to nouns, the new model performs roughly the same
on both word types. This translates to massive 20.2%-40.5% improvements
on the verb similarity portion of SimLex999 compared to leading word em-
beddings.

I then presented (Chapter 4) a novel variant of the word2vec skipgram
model (Mikolov et al., 2013b), which replaces bag-of-word contexts with sym-
metric pattern contexts. The model obtains 15% improvement on verb simi-
larity prediction. Moreover, the model also obtains substantial improvements
on adjectives (up to 9%), and is super fast to train, requiring only 2-3% of
the training time of the skip-gram model with bag-of-words or dependency
contexts.

Finally, for completeness, I presented another application of patterns –
an authorship attribution system for very short texts. This pattern-based
system obtains state-of-the-art results on the task of identifying the author
of Twitter tweets. The system is able to present impressive results (more
than 30% accuracy) even in a setup of 1,000 authors. Lastly, the system
identified a unique signature for many of the authors, which indicates that
authors tend to adopt a unique style even when writing very short texts.

In addition to the chapters of this dissertation, I also took part in a few
related projects. In (Rubinstein et al., 2015), we pointed out to another
limitation of leading word embeddings – their inability to capture attributive
properties (e.g., bananas are yellow, elephants are big). We selected several
attributive properties (e.g., is red) and showed that a classifier that uses
state-of-the-art embeddings as features is unable to separate between words
that have this property (e.g., strawberry) and those that do not have it (e.g.,
table). The poor classification performance is contrasted against a relatively
high performance on learning taxonomic properties (e.g., dog is an animal,
apple is a fruit).

In (Vulić et al., 2017), we extended the work described in Chapter 4,
and developed an automatic method for extracting the most suitable con-
text types for each word category. Our results show that our method can
improve word similarity prediction scores on verbs, which are, as shown in
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this dissertation, a known caveat for word embeddings, but also for nouns
and adjectives, on which leading models perform relatively well.

To conclude, this dissertation demonstrated that patterns are a very ef-
fective tool for representing lexical semantics, one that is able to overcome
many of the problems that word embeddings that rely on bag-of-word con-
texts suffer from. I have shown the power of patterns both in the context of
existing models, and in the context of novel algorithms. The pattern-based
models obtain state-of-the-art results in all cases.

Future Work

The work presented in this dissertation can serve as basis for many future
directions. The first direction is finding better ways to exploit the information
captured by patterns. Bag-of-words, dependency edges and patterns capture
different types of information. In Chapter 3 I have presented initial results
that indicate that their strengths are complementary. In (Vulić et al., 2017)
we presented a method for combining different context types in order to
improve the representation of different part-of-speech types. A question that
remains open is how to construct a principled model for integrating patterns
and other types of contexts. A related research trend studied the integration
into beg-of-words word embeddings of external knowledge from manually
constructed resources such as WordNet (Kiela et al., 2015; Pham et al., 2015;
Liu et al., 2015; Faruqui et al., 2015; Mrkšić et al., 2016). Future work will
include designing a specific model for making the most of the combination
between patterns and other context types.

Another direction concerns multilingualism. Although this dissertation
focuses on English, the strength of patterns also comes from their corpus
based nature, which makes them applicable to many other languages (Davi-
dov and Rappoport, 2006, 2010). The prevalence of evaluation datasets in
other languages (Hassan and Mihalcea, 2009; Joubarne and Inkpen, 2011;
Leviant and Reichart, 2015) calls for testing whether the problems reported
in this dissertation, as well as their pattern-based solutions, generalize cross-
linguistically.

An immediate, highly studied direction is looking into other lexical se-
mantic tasks. Patterns have been shown useful for capturing a range of
such tasks (Hearst, 1992; Lin et al., 2003; Snow et al., 2004; Davidov and
Rappoport, 2008a), while in contrast, embeddings have not been shown to
perform as well (Levy et al., 2015a). The question that remains open is
can these methods be combined to improve performance on tasks such as
hypernymy or entailment detection.

Another issue that arises from this work is its applicability to downstream
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applications. One of the main reasons for doing research on word embeddings
is that embeddings have been shown useful to a range of NLP tasks, most
notably as vector initialization for NN models (Socher et al., 2013; Chen and
Manning, 2014; Devlin et al., 2014). Several works have shown that high
evaluation scores on intrinsic dataset do not directly translate to improved
performance on extrinsic tasks (Schnabel et al., 2015; Tsvetkov et al., 2015;
Melamud et al., 2016). A promising future direction is to check whether
the improved word similarity performance (and verb similarity in particular)
presented here could translate to improved performance for tasks like parsing,
machine translation and sentiment analysis.

An important question that remains open is whether “the perfect em-
beddings” even exist. In the beginning of this dissertation I provided the
following quote: “all of the semantics of human language might one day be
captured in some kind of Vector Space Model” (Turney and Pantel, 2010).
The work presented here questions this hypothesis. Some of the issues raised
here are not necessarily problems, and one could imagine a downstream ap-
plication that would actually find them useful. For example, distinguishing
between similar and related concepts is irrelevant for document classification
systems. Similarly, word classification systems might consider antonyms in
the same semantic category (e.g., “tall” and “short” are both size adjectives).
As the cosine similarity between “cup” and “coffee” (or between “good” and
“bad”) cannot be both high and low, each model must take a pick, and can-
not support both alternatives. This means that at the very least, the current
method for applying word embeddings – reducing them to a single number
(cosine similarity) – cannot suffice for a complete representation of lexical
semantics. An immediate corollary is that research should focus not only on
building stronger and more sophisticated models, but also on learning how
to better exploit the information encompassed in them.

Finally, this dissertation focused on patterns as a useful tool for represent-
ing words, as well as other tasks such as authorship attribution. The term
“pattern” has been used to term various different linguistic objects. In this
work I used at least two different types of patterns (symmetric pattern, and
general high frequency/low frequency patterns). Other types exist, includ-
ing dependency patterns (Baroni and Lenci, 2010), word patterns (Turney,
2006, 2008b) and PoS patterns (Allan and Raghavan, 2002). Future work
will compare the different types of patterns and establish which type (if any)
is preferable for word representation tasks, as well as other tasks for which
they are useful, such as sentiment analysis and authorship attribution.
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 תקציר

לתת פתרונות , מחד, הוא תחום מחקר שמנסה( Natural Language Processing)עיבוד שפה 
כגון , לפתח יישומים למשימות הקשורות לשפה, אידךומ, בלשניותמחקר חישוביים לשאלות 

שאלה מרכזית  ותשתי המטרות הללו חולק. תמצות אוטומטי ומענה על שאלות, תרגום מכונה
של , כלבמה המשמעות של המילה , למשל; (סמנטיקה)לייצג משמעות כיצד היא ו, משותפת

שאלה זו היא . או של מבני שפה מורכבים יותר, לאכול את הכובעאו  שטיח אדוםביטויים כמו 
 .ועם זאת יש לה השלכות פרקטיות ואמפיריות, (או אפילו קוגניטיבית)בלשנית במהותה 

י בניית וקטורים של "שפה היא עאלמנטים של לייצוג המשמעות של ביותר השיטה הנפוצה 

פותחו לראשונה , vector space modelsהנקראות גם , שיטות אלו(. feature vectors)תכוניות 

ת מטריצבנו  vector space modelsמודלים מסוג  ,עד לאחרונה. 07-שנות הראשית כבר ב
בשנים . בטקסט פיענוטה להוילים האחרות שאיתן היא כך שכל מילה מיוצגת על ידי המ, שכנויות

שיטות אלו נקראות שיכוני מילים . בניית וקטורי תכוניותשיטות חדשניות לפותחו  האחרונות

(word embeddings .)רשתות נוירוניםמבוססי  םהמבוססים לרוב על אלגוריתמי, מודלים אלו ,
הצלחה זו הפכה את שיכוני המילים . הובילו לשיפורים משמעותיים במגוון משימות סמנטיות

 של כל מילה שדה הסמנטי המלאלייצג את השיש ביכולתם ויצרה תחושה , לכלי מאוד פופולרי
 .בלקסיקון

. גבלויותשיכוני מילים סובלים ממספר מו, אני אראה שלמרות הצלחתם הכבירה, ה זועבודב
מילים המובילים בימינו מצליחים לתפוס בצורה יוצאת מן האני אראה שלמרות ששיכוני , ראשית

הם הרבה פחות טובים בזיהוי , (חלב-ל פרההקשר בין )בין מילים  אסוציאציההכלל קשר של 
 טוב) דומותאני אדגים שהם לא מסוגלים להבחין בין מילים , שנית(. סוס/  פרה)בין מילים  דמיון

הינם כלי שבעוד ששיכוני מילים אני אראה , שלישית. (רע / טוב) הפוכותלבין מילים ( מעולה/ 
הם הרבה פחות מוצלחים , (ביתאו  כלב, למשל) עצם שמותמוצלח לייצוג המשמעות של  מאוד

 .(לרוץ, לאכול) פעליםבייצוג 

לדוגמא , פטרנים)תבניות אני אציג מספר פתרונות מבוססי , על מנת להתמודד עם הבעיות הללו

"X such as Y", "X is a Y".) הן . תבניות הן אחת האלטרנטיבות הכי מוצלחות לשיכוני מילים
אני אראה ששילובן בתוך תבניות שיכון . הוכחו כמוצלחות בזיהוי מגוון רחב של יחסים סמנטיים

 .יכול להקל במידה רבה על הבעיות של האחרונים

שתבניות יכולות לשמש כתכוניות יותר מוצלחות מאשר שיכוני מילים עבור  יםגהדאני אתחיל בל

מודל שמשתמש ו ,k-Nearest Neighbors-אני אציג הרחבה של אלגוריתם ה. משימות סמנטיות

על מנת ( ''X and Y'', "X or Y", למשל)סימטריות בהרחבה זו עם תכוניות מבוססות תבניות 
האם האובייקט חי או , האם ניתן לאכול את האובייקט, משלל)לזהות מגוון תכונות סמנטיות 

 .ומגיע לשיפורים משמעותיים יחסית לשיכוני מילים מובילים, (לא

ואשר , אני אמשיך בהצגת שני מודלים של שיכוני מילים אשר מבוססים על תבניות סימטריות
גבוהות התוצאות ל יעהראשון הוא מודל המג. מסוגלים להתגבר על הבעיות של שיכוני מילים

השני . לים במשימת חיזוי דמיון בין מיליםישישה מודלים מובמהתוצאות של בצורה משמעותית 

 ,.word2vec skipgram (Mikolov et alהמפורסם הוא גירסא מבוססת תבניות של המודל 

2013b) ,פעליםמהמודל המקורי במשימת חיזוי דמיון בין  51%-תוצאות הגבוהות ב האשר משיג ,
 . המודל המקורישל ימון זמן האקצר בצורה דרמטית יחסית ל השלן ומיאזמן השלמרות זאת 

בעלות ערך גם יות נוכתכ יכולות לשמש הןמראה שש, תבניותמבוססת נוספת אציג עבודה , לבסוף

 .בודד (tweet)ציוץ זיהוי הכותב של  –למשימה נוספת 

היא שופכת אור על , ראשית. בשני אספקטיםבאה לידי ביטוי זו עבודה התרומה של , לסיכום
 .יכולים-אשר נחשבו עד לאחרונה כל, של שיכוני מילים מובילים( כמו גם על החוזקות)המגבלות 

הן על ידי , לואניתן להשתמש בתבניות על מנת להתגבר על מגבלות כיצד מדגימה היא , שנית



, על ידי פיתוח מודלים חדשנייםשילוב תכוניות מבוססות תבניות בתוך מודלים קיימים והן 
 .מבוססי תבניות

 

  



 

 

 

 

 

 

 

 

 

 תחת הדרכתו של נעשתהעבודה זו 

 ארי רפופורט' פרופ

 

 

 

 
  



 

 

תבניות  ותמבוססשיטות 

 שיפורל

 סמנטיקה לקסיקלית

 שיכוני מיליםו
 

 "דוקטור לפילוסופיה"תואר חיבור לשם קבלת 
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