### Symmetric Pattern Based Word Embeddings for Improved Word Similarity Prediction

**<u>Roy Schwartz</u>**<sup>+</sup>, Roi Reichart <sup>\*</sup> and Ari Rappoport<sup>+</sup>

+The Hebrew University, \*Technion IIT CoNLL 2015







# **Apples and Oranges**





# juicy round Apples and Oranges



juicy



round

# Apples and Oranges















# juicy

round



# **Symmetric Patterns**

# Overview

#### • The problem

- Word embeddings do not capture pure word **similarity** 

#### • The Solution

- symmetric patterns-based word embeddings
- First embeddings to support for **antonyms** (e.g., good/bad) w/o using a dictionary

#### Results

- **5.5%** improvement over six state-of-the-art models
- 10% improvement with a joint model
- 20% improvement on verbs

# Word Similarity

- Whether two words are **semantically** similar
  - cats are similar to dogs

# Word Similarity

- Whether two words are **semantically** similar
  - cats are similar to dogs
- Definition is not entirely clear
  - Synonyms (i.e., share the same meaning)
  - Co-hyponyms (i.e., belong to the same category)

# Word Similarity

- Whether two words are **semantically** similar
  - cats are similar to dogs
- Definition is not entirely clear
  - Synonyms (i.e., share the same meaning)
  - Co-hyponyms (i.e., belong to the same category)
- Human judgment evaluation

### Vector Space Models DS Hypothesis (Harris, 1954)

- ... tokens to date, **friend** lists and recent ...
- ... by my dear **friend** and companion, Fritz von ...
- ... even have a **friend** who never fails ...
- ... by my worthy **friend** Doctor Haygarth of ...
- ... and as a **friend** pointed out to ...
- ... partner, in-laws, relatives or **friends** speak a different ...
- ... petition to a **friend** Go to the ...
- ... otherwise, to a **friend** or family member ...
- ...images from my **friend** Rory though ...
- ... great, and a **friend** as well as a colleague, who, ...

•••

Examples taken from the ukwac corpus (Baroni et al., 2009)

### Vector Space Models DS Hypothesis (Harris, 1954)

- ... tokens to date, friend lists and recent ...
- ... by my dear friend and companion, Fritz von ...
- ... even have a friend who never fails ...
- ... by my worthy **friend** Doctor Haygarth of ...
- ... and as a **friend** pointed out to ...
- ... partner, in-laws, relatives or **friends** speak a different ...

... petition to a **friend** Go to the ...

... otherwise, to a **friend** or family member ...

.. images from my **friend** Rory though - ...

... great, and a friend as well as a colleague, who, ...

Examples taken from the ukwac corpus (Baroni et al., 2009)

...

### **Vector Space Models**



### **Vector Space Models**



### Similarity or Relatedness? Hill et al., 2014



### Similarity or Relatedness? Hill et al., 2014

sugar

milk

cookie

cup

## coffee

tea

hot\_water

### Similarity or **Dis**similarity?

# tall short

### Similarity or **Dis**similarity?



# Current Vector Space Models do not Capture (**pure**) Word **Similarity**

### Symmetric Patterns Contexts Davidov and Rappoport, 2006







# neither X nor Y

# X as well as Y

### Symmetric Patterns Contexts Davidov and Rappoport, 2006

# bright and shiny shiny and bright

# Symmetric Patterns (SPs)

- Words that co-occur in SPs tend to be semantically **similar** 
  - Widdows and Dorow, 2002
  - Davidov and Rappoport, 2006
  - Kozareva et al., 2008
  - Feng et al., 2013
  - Schwartz et al., 2014

# Symmetric Patterns (SPs)

- Words that co-occur in SPs tend to be semantically **similar** 
  - Widdows and Dorow, 2002
  - Davidov and Rappoport, 2006
  - Kozareva et al., 2008
  - Feng et al., 2013
  - Schwartz et al., 2014

*neither* here *nor* there

John and Mike

#### bold and beautiful

Paris or Rome

# Symmetric Patterns (SPs)

- Words that co-occur in SPs tend to be semantically similar
  - Widdows and Dorow, 2002
  - Davidov and Rappoport, 2006
  - Kozareva et al., 2008
  - Feng et al., 2013
  - Schwartz et al., 2014

neither here nor there#car or wheelJohn and Mike#neither cup nor coffeebold and beautifulParis or Rome#dog and leash#dog and leash

### **SP-based Word Embeddings**

PPMI(dog,house) PPMI(dog,mouse) PPMI(dog,zebra) PPMI(dog,wine) PPMI(dog,cat) PPMI(dog,dolphin) PPMI(dog,bottle) PPMI(dog,pen)

\* Simple smoothing applied

/sp

### **SP-based Word Embeddings**

PPMI(dog,house) PPMI(dog,mouse) PPMI(dog,zebra) PPMI(dog,wine) PPMI(dog,cat) PPMI(dog,dolphin) PPMI(dog,bottle) PPMI(dog,pen)



\* Simple smoothing applied

**/**sp

### Antonyms big / small

- Some SPs are indicative of antonymy (Lin et al., 2003)
  - "either X or Y" (either big or small)
  - "from X to Y" (from poverty to richness)

### Antonyms big / small

Some SPS are indeptive of antonymy (Lin et al., 2003)
– "either X or Y" (eithur of grand of the second of the

### Word Embeddings that Identify Antonyms ACL 2015 Papers

- *Revisiting Word Embedding for Contrasting Meaning* (Chen et al.)
- Learning Semantic Word Embeddings based on Ordinal Knowledge Constraints (Liu et al.)
- AutoExtend: Extending Word Embeddings to Embeddings for Synsets and Lexemes (Rothe and Schutze, **Best paper award**)

### Word Embeddings that Identify Antonyms ACL 2015 Papers

- *Revisiting Word Embedding for Contrasting Meaning* (Chen et al.)
- Learning Semantic Word Embeddings based on Ordinal Knowledge Constraints (Liu et al.)
- AutoExtend: Extending Word Embeddings to Embeddings for Synsets and Lexemes (Rothe and Schutze, **Best paper award**)

### First model to support for antonyms without using a dictionary or a thesaurus!

### **SP-based Word Embeddings**

PPMI(dog,house) PPMI(dog,mouse) PPMI(dog,zebra) PPMI(dog,wine) PPMI(dog,cat) PPMI(dog,dolphin) PPMI(dog,bottle) PPMI(dog,pen)



\* Simple smoothing applied

**/**sp

### **SP-based Word Embeddings**

PPMI(dog,house) PPMI(dog,mouse) PPMI(dog,zebra) PPMI(dog,wine) PPMI(dog,cat) PPMI(dog,dolphin) PPMI(dog,bottle)



\* Simple smoothing applied

**/**sp

### Experiments

• Embeddings are generated using an 8G words corpus

• Baselines: six state-of-the-art models

- Word similarity task
  - SimLex999 dataset (Hill et al., 2014)

| Model                                     | Spearman's p |
|-------------------------------------------|--------------|
| Glove (Pennington et al., 2014)           | 0.35         |
| PPMI-Bag-of-words                         | 0.423        |
| word2vec CBOW (Mikolov et al,. 2013)      | 0.43         |
| Dep (Levy and Goldberg, 2014)             | 0.436        |
| NNSE (Murphy et al., 2012)                | 0.455        |
| word2vec skip-gram (Mikolov et al,. 2013) | 0.462        |

| Model                                     | Spearman's p |
|-------------------------------------------|--------------|
| Glove (Pennington et al., 2014)           | 0.35         |
| PPMI-Bag-of-words                         | 0.423        |
| word2vec CBOW (Mikolov et al,. 2013)      | 0.43         |
| Dep (Levy and Goldberg, 2014)             | 0.436        |
| NNSE (Murphy et al., 2012)                | 0.455        |
| word2vec skip-gram (Mikolov et al,. 2013) | 0.462        |
| SP                                        | 0.517        |

| Model                                     | Spearman's p |
|-------------------------------------------|--------------|
| Glove (Pennington et al., 2014)           | 0.35         |
| PPMI-Bag-of-words                         | 0.423        |
| word2vec CBOW (Mikolov et al,. 2013)      | 0.43         |
| Dep (Levy and Goldberg, 2014)             | 0.436        |
| NNSE (Murphy et al., 2012)                | 0.455        |
| word2vec skip-gram (Mikolov et al,. 2013) | 0.462        |
| SP                                        | 0.517        |

$$f_{joint}(w_i, w_j) = \alpha \cdot f_{SP}(w_i, w_j) + (1 - \alpha) \cdot f_{skip-gram}(w_i, w_j)$$

| Model                                     | Spearman's p |
|-------------------------------------------|--------------|
| Glove (Pennington et al., 2014)           | 0.35         |
| PPMI-Bag-of-words                         | 0.423        |
| word2vec CBOW (Mikolov et al,. 2013)      | 0.43         |
| Dep (Levy and Goldberg, 2014)             | 0.436        |
| NNSE (Murphy et al., 2012)                | 0.455        |
| word2vec skip-gram (Mikolov et al,. 2013) | 0.462        |
| SP                                        | 0.517        |
| Joint                                     | 0.563        |

$$f_{joint}(w_i, w_j) = \alpha \cdot f_{SP}(w_i, w_j) + (1 - \alpha) \cdot f_{skip-gram}(w_i, w_j)$$

| Model                                     | Spearman's p |
|-------------------------------------------|--------------|
| Glove (Pennington et al., 2014)           | 0.35         |
| PPMI-Bag-of-words                         | 0.423        |
| word2vec CBOW (Mikolov et al,. 2013)      | 0.43         |
| Dep (Levy and Goldberg, 2014)             | 0.436        |
| NNSE (Murphy et al., 2012)                | 0.455        |
| word2vec skip-gram (Mikolov et al,. 2013) | 0.462        |
| SP                                        | 0.517        |
| Joint                                     | 0.563        |

$$f_{joint}(w_i, w_j) = \alpha \cdot f_{SP}(w_i, w_j) + (1 - \alpha) \cdot f_{skip-gram}(w_i, w_j)$$

| <u>Model</u>                              | <u>Adj.</u> |
|-------------------------------------------|-------------|
| Glove (Pennington et al., 2014)           | 0.571       |
| PPMI-Bag-of-words                         | 0.548       |
| word2vec CBOW (Mikolov et al,. 2013)      | 0.579       |
| Dep (Levy and Goldberg, 2014)             | 0.54        |
| NNSE (Murphy et al., 2012)                | 0.594       |
| word2vec skip-gram (Mikolov et al,. 2013) | 0.604       |
| SP                                        | 0.663       |

| <u>Model</u>                              | <u>Adj.</u> | <u>Nouns</u> |
|-------------------------------------------|-------------|--------------|
| Glove (Pennington et al., 2014)           | 0.571       | 0.377        |
| PPMI-Bag-of-words                         | 0.548       | 0.451        |
| word2vec CBOW (Mikolov et al,. 2013)      | 0.579       | 0.48         |
| Dep (Levy and Goldberg, 2014)             | 0.54        | 0.449        |
| NNSE (Murphy et al., 2012)                | 0.594       | 0.487        |
| word2vec skip-gram (Mikolov et al,. 2013) | 0.604       | 0.501        |
| SP                                        | 0.663       | 0.497        |

| <u>Model</u>                              | <u>Adj.</u> | <u>Nouns</u> | <u>Verbs</u> |
|-------------------------------------------|-------------|--------------|--------------|
| Glove (Pennington et al., 2014)           | 0.571       | 0.377        | 0.163        |
| PPMI-Bag-of-words                         | 0.548       | 0.451        | 0.276        |
| word2vec CBOW (Mikolov et al,. 2013)      | 0.579       | 0.48         | 0.252        |
| Dep (Levy and Goldberg, 2014)             | 0.54        | 0.449        | 0.376        |
| NNSE (Murphy et al., 2012)                | 0.594       | 0.487        | 0.318        |
| word2vec skip-gram (Mikolov et al,. 2013) | 0.604       | 0.501        | 0.307        |
| SP                                        | 0.663       | 0.497        | 0.578        |

| <u>Model</u>                              | <u>Adj.</u> | <u>Nouns</u> | <u>Verbs</u> |
|-------------------------------------------|-------------|--------------|--------------|
| Glove (Pennington et al., 2014)           | 0.571       | 0.377        | 0.163        |
| PPMI-Bag-of-words                         | 0.548       | 0.451        | 0.276        |
| word2vec CBOW (Mikolov et al,. 2013)      | 0.579       | 0.48         | 0.252        |
| Dep (Levy and Goldberg, 2014)             | 0.54        | 0.449        | 0.376        |
| NNSE (Murphy et al., 2012)                | 0.594       | 0.487        | 0.318        |
| word2vec skip-gram (Mikolov et al,. 2013) | 0.604       | 0.501        | 0.307        |
| SP                                        | 0.663       | 0.497        | 0.578        |

| <u>Model</u>                              | <u>Adj.</u> | <u>Nouns</u> | <u>Verbs</u> |
|-------------------------------------------|-------------|--------------|--------------|
| Glove (Pennington et al., 2014)           | 0.571       | 0.377        | 0.163        |
| PPMI-Bag-of-words                         | 0.548       | 0.451        | 0.276        |
| word2vec CBOW (Mikolov et al,. 2013)      | 0.579       | 0.48         | 0.252        |
| Dep (Levy and Goldberg, 2014)             | 0.54        | 0.449        | 0.376        |
| NNSE (Murphy et al., 2012)                | 0.594       | 0.487        | 0.318        |
| word2vec skip-gram (Mikolov et al,. 2013) | 0.604       | 0.501        | 0.307        |
| SP                                        | 0.663       | 0.497        | 0.578        |

### More Results

- List of SPs is acquired automatically (not manually defined)
- Antonymy as Word Analogy
- Wordsim353 experiments
- And more...

### More Results

- List of SPs is acquired automatically (not manually defined)
- Antonymy as Word Analogy
- Wordsim353 experiments
   O
- And more...

## Summary

- Word embeddings based on symmetric patterns
  - They capture similarity and not relatedness
  - The first word embeddings model to mark **antonym** pairs as dissimilar (w/o using a dictionary)

- Experiments on SimLex999
  - **5.5%** improvement over six state-of-the-art models
  - 10% improvement with a joint model
  - 20% improvement on verbs

### Future Work

- Enhancing bag-of-words models with SPs
- Does order count? **asymmetric** symmetric patterns



#### Roy Schwartz (roys02@cs.huji.ac.il)

ww.cs.huji.ac.il/~roys02/papers/sp\_embeddings/sp\_embeddings.html

