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https://www.microsoft.com/en-us/research/blog/turing-nlg-a-17-billion-parameter-language-model-by-microsoft/

Premise:  
Big Models 

https://medium.com/huggingface/distilbert-8cf3380435b5
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Big Models are Expensive 
Strubell et al., 2019; Schwartz et al., 2019

Our goal:  
Efficient inference
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Efficient Inference 
Common Approaches
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Distillation (teacher/student) 
Pruning 
Quantization



Our Approach:  
Matching Model and Instance Complexity
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What a great movie!



Our Approach:  
Matching Model and Instance Complexity
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I could definitely see why this movie received such great critiques, 
but at the same time I can’t help but wonder whether the plot was 

written by a 12 year-old or by an award-winning writer. 



Pretrained BERT Fine-tuning
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Partial BERT Baseline
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Partial BERT Baseline
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Strong Baselines 
Speed/Accuracy Tradeoff
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3 times faster, 
with 1% lower 

accuracy
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Our Approach: Training Time
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Our Approach: Test Time
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Calibrated Confidence Scores

• We interpret the softmax label scores as model confidence


• We calibrate the scores using temperature calibration (Guo et al., 2017) 


• Speed/accuracy tradeoff controlled by a single early-exit 
confidence threshold (a runtime parameter)
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Experiments

• Datasets


• Text classification


• AG News (Zhang et al., 2015); IMDB (Maas et al., 2011); SST (Socher et al., 2013)


• NLI


• SNLI (Bowman et al., 2015); MultiNLI (Williams et al., 2018)


• BERT-large-uncased (Devlin et al., 2019)


• Output classifiers added to layers 0,4,12 and 23
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Baselines
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Standard baseline Efficient baselines
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Better Speed/Accuracy Tradeoff 
Text Classification
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Our model is 
Twice as fast, same 

performance as 
baseline

Baseline:  
3 times faster, with 

1% lower 
accuracy

Our model:   
5 times faster, with 
1% lower accuracy

thr=0

thr=0.55
thr=0.6

thr=0.95 thr=1



Similar Speed/Accuracy Tradeoff 
NLI

17



Highlights
• No effective growth in parameters


• < 0.005% additional parameters


• Training (i.e., fine-tuning) is not slower


• A single trained model provides multiple options along 
the speed/accuracy tradeoff


• A single runtime parameter: confidence threshold


• Caveat: requires batch size=1 during inference
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More Highlights 
See Paper!

• Our method can also be combined with model distillation 


• Our method defines a criterion for “difficulty”
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Recap
• Efficient inference


• Simple instances exit early, hard instances get more 
compute


• Training is not slower than the original BERT model 


• One model fits all!


• A single runtime parameter controls for the speed/accuracy curve


• https://github.com/allenai/sledgehammer
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Concurrent Work
• Depth-adaptive transformer. Elbayad et al., ICLR 2020 


• Balancing cost and benefit with tied-multi transformers. Dabre et al., 
2020


• Controlling computation versus quality for neural sequence model. 
Bapna et al., 2020 


• Explicitly Modeling Adaptive Depths for Transformer. Liu et al., 2020


• FastBERT: a self-distilling BERT with adaptive inference time. Liu et al., 
ACL 2020  

• DeeBERT: Dynamic Early Exiting for Accelerating BERT Inference. Xin et. 
al., ACL 2020
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 Come to
Jerusalem!



Recap
• Efficient inference


• Simple instances exit early, hard instances get more 
compute


• Training is not slower than the original BERT model 


• One model fits all!


• A single runtime parameter controls for the speed/accuracy curve


• https://github.com/allenai/sledgehammer
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