LSTMs Exploit Linguistic Attributes of Data
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- Data with linguistic attributes helps LSTMs
learn a non-linguistic memorization task.

« To solve the task, LSTMs use individual
neurons to count timesteps.

»  We hypothesize that LSTMs pick up on the
patterns and structure in linguistic data and use
them as additional noisy training signal.

Testbed Memorization Task

« Given a constant-length seqguence of tokens,
predict the identity of the middle token seen.
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Training Datasets with
Various Linguistic Attributes

1. Language setting

| Pierre Vinken , 61 ]
[ years old , will ]

[ join the board as ]

Directly take sequences

2. n-gram setting

' Pierre Vinken ] [, 61 ][ years old ]

,will] [jointhe] [boardas] ...

1. Chunk corpus into pieces of size n
(nh = 2 in this example)

x: join the Pierre Vinken]
2 Permute o OPlit into sequences years old board as |
the chunks of desired length 61, will]

(4 in this example)

3. Uniform setting
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Code: git.io/Istms-exploit  Paper: bit.ly/Istms-exploit
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Experiments

» Test data: uniform distribution over the 100 rarest
words in the PTB.

* Ensures that models truly generalize and are not
just using training data-specific features.

Models trained on data with linguistic
features generalize better
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What happens if we add more hidden units?
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Further Analysis

« We further study an LSTM with 100 hidden units trained on
Language, where train and test sequences are of length 300.

To solve the task, RNNs learn to count
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The RNN exploits linguistic features to bootstrap
itself early In training and learns to generalize later.
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