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Background

Story	Prefix Endings

Joe went to college for art. He 
graduated with a degree in painting. 
He couldn't find a job. He then
responded to an ad in the paper.

Then he got hired.

Joe hated pizza.

Story	Cloze	Task:	UW	NLP	System	@	Schwartz	et	al. 3



Approach	1:				Language	Modeling

𝑒∗ = argmax
)∈{),,).}

𝑝12(𝑒|prefix)
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Approach	1.1:	Language	Modeling+

𝑒∗ = argmax
)∈{),,).}

𝑝12(𝑒|prefix)
𝒑𝒍𝒎(𝒆)
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Approach	2.0:	Style

• Intuition:	authors	use	different	style when	asked	to	write	right	vs.	

wrong story	ending

• We	train	a	style-based	classifier	to	make	this	distinction

• Features	are	computed	using	story	endings	only

• Without	considering	the	story	prefix
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Combined	Model

• A	logistic	regression	classifier

• Features:	

• LM	features:	𝑝12 𝑒 prefix , 		𝑝12 𝑒 , ?@A()|prefix)
?@A	())

• An	LSTM	RNNLM	trained	on	the	ROC	story	corpus

• Style	features:	sentence	length,	character	4-grams,	word	1-5-grams

• Features	computed	without	access	to	the	story	prefixes

• Model	is	trained	and	tuned	on	the	story	cloze	development set
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Results
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• Our	LM	expression	is	proportional	to	pointwise	mutual	information:

𝑙𝑜𝑔	
𝑝 𝑒|prefix

𝑝 𝑒 = 𝑙𝑜𝑔
𝑝 𝑒, prefix
𝑝 𝑒 𝑝 prefix = 𝑃𝑀𝐼(𝑒, prefix)

Discussion:	Language	Modeling+
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Most	Heavily	Weighted	Style	Features
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Discussion:	Style

• different	writing	tasks	 different	writing	style

• Common	sense	induction	is	hard
• What	are	our	models	learning?

• It	is	important	to	reach	the	ceiling	of	simple	“dumb”	approaches

• The	added	value	of	our	RNNLM	indicates	that	it	is	learning	something	beyond	shallow	features

• Schwartz et	al.,	2017,	The	Effect	of	Different	Writing	Tasks	on	Linguistic	Style:	A	Case	Study	of	the	ROC	Story	Cloze	Task

(mental	state?)
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Summary

• ?@A()|prefix)
𝒑𝒍𝒎(𝒆)

• Style	features	that	ignore	the	story	prefix	get	large	performance	gains

• A	combined	approach	yields	new	state-of-the-art	results	– 75.2%

Thank	you!
Roy	Schwartz roysch@cs.washington.edu http://homes.cs.washington.edu/~roysch/
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