Story Cloze Task: UW NLP System

Roy Schwartz, Maarten Sap, Yannis Konstas, Leila Zilles, Yejin Choi and Noah A. Smith LSDSem 2017

Outline

- System overview
 - Language modeling
 - Writing style
- Results
- Discussion

Background

Story Prefix	<u>Endings</u>
Joe went to college for art. He graduated with a degree in painting. He couldn't find a job. He then responded to an ad in the paper.	Then he got hired.
	Joe hated pizza.

Approach 1: Language Modeling

$$e^* = \underset{e \in \{e_1, e_2\}}{\operatorname{argmax}} p_{lm}(e|\text{prefix})$$

Approach 1.1: Language Modeling⁺

$$e^* = \underset{e \in \{e_1, e_2\}}{\operatorname{argmax}} \frac{p_{lm}(e|\text{prefix})}{p_{lm}(e)}$$

Approach 2.0: Style

- Intuition: authors use different style when asked to write right vs.
 wrong story ending
- We train a style-based classifier to make this distinction
- Features are computed using story endings only
 - Without considering the story prefix

Combined Model

- A logistic regression classifier
- Features:
 - LM features: $p_{lm}(e|\text{prefix}), \; p_{lm}(e), \; \frac{p_{lm}(e|\text{prefix})}{p_{lm}(e)}$
 - An LSTM RNNLM trained on the ROC story corpus
 - Style features: sentence length, character 4-grams, word 1-5-grams
 - Features computed without access to the story prefixes
- Model is trained and tuned on the story cloze development set

Results

Discussion: Language Modeling⁺

• Our LM expression is proportional to pointwise mutual information:

$$log\left(\frac{p(e|\text{prefix})}{p(e)}\right) = log\left(\frac{p(e,\text{prefix})}{p(e)p(\text{prefix})}\right) = PMI(e,\text{prefix})$$

Most Heavily Weighted Style Features

Right	Freq.	Wrong	Freq.
'ed .'	6.5%	START NNP	54.8%
'and '	13.6%	NN .	47.5%
JJ	45.8%	NN NN .	5.1%
to VB	20.1%	VBG	10.1%
'd th'	10.9%	START NNP VBD	41.9%

Discussion: Style

different writing tasks
 different writing style
 (mental state?)

- Common sense induction is hard
 - What are our models learning?
 - It is important to reach the ceiling of simple "dumb" approaches
 - The added value of our RNNLM indicates that it is learning something beyond shallow features

• Schwartz et al., 2017, The Effect of Different Writing Tasks on Linguistic Style: A Case Study of the ROC Story Cloze Task

Summary

```
• \frac{p_{lm}(e|\text{prefix})}{p_{lm}(e)}
```

- Style features that ignore the story prefix get large performance gains
- A combined approach yields new state-of-the-art results 75.2%

Thank you!

Roy Schwartz roysch@cs.washington.edu http://homes.cs.washington.edu/~roysch/