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Story	Prefix Endings

Joe went to college for art. He graduated with a
degree in painting. He couldn't find a job. He then
responded to an ad in the paper.

Then he got hired.

Joe hated pizza.

Story	Cloze	Task

Approach	1:	Language	Modeling+

𝑒∗ = argmax
)∈{),,).}

𝑝12(𝑒|prefix)
𝒑𝒍𝒎(𝒆)

Approach	2:	Style
• Intuition:	authors	use	different	style when	asked	to	write	right	vs.	
wrong story	ending

• We	train	a	style-based	classifier	to	make	this	distinction

• Features	are	computed	using	story	endings	only
• Without	considering	the	story	prefix

Combined	Model
• A	logistic	regression	classifier

• LM	features:	𝑝12 𝑒 prefix , 		𝑝12 𝑒 , ?@A()|prefix)
?@A	())

• An	LSTM	RNNLM	trained	on	the	ROC	story	corpus

• Style	features:	sentence	length,	character	4-grams,	word	1-5-grams

• Model	is	trained	and	tuned	on	the	story	cloze	development	set

Results

Discussion:	Language	Modeling+

Analysis

Discussion:	Style
• different	writing	tasks	 different	writing	style

• Common	sense	induction	is	hard!
• Our	style-features	constitute	a	strong	baseline	for	the	task

• Our	RNNLM	is	learning	something	beyond	shallow	features

• Schwartz et	al.,	2017,	The	Effect	of	Different	Writing	Tasks	on	Linguistic	
Style:	A	Case	Study	of	the	ROC	Story	Cloze	Task

(mental	state?)

𝑙𝑜𝑔	
𝑝 𝑒|prefix

𝑝 𝑒 = 𝑙𝑜𝑔
𝑝 𝑒, prefix
𝑝 𝑒 𝑝 prefix = 𝑷𝑴𝑰(𝑒, prefix)

The brownies are so delicious
Laverne eats two of them.

Lina now knew that candy canes 
were boring.

His boss commends him for a job well 
done.

I was very ashamed of my 
performance.

Eventually I healed. I am dishonest.
We had a great time! Ron started collecting bottle caps.

roysch@cs.washington.edu http://homes.cs.washington.edu/~roysch/

Abstract
This poster describes University of Washington NLP’s submission for the

Linking Models of Lexical, Sentential and Discourse-level Semantics

(LSDSem 2017) shared task—the Story Cloze Task. Our system is a linear

classifier with a variety of features, including both the scores of a neural

language model and style features. We report 75.2% accuracy on the task.

Right Freq. Weight Wrong Freq. Weight
‘ed .’ 6.5% 0.17 START NNP 54.8% 0.21
‘and	‘ 13.6% 0.15 NN . 47.5% 0.17
JJ 45.8% 0.14 NN	NN	. 5.1% 0.15
to	VB 20.1% 0.13 VBG 10.1% 0.11
‘d	th’ 10.9% 0.13 START NNP	VBD 41.9% 0.11
‘lly ’ 5.0% 0.11 ‘ecid’ 6.5% 0.11
‘er .’ 5.9% 0.08 NNS . 9.6% 0.10
‘for	’ 6.0% 0.07 ‘ided’ 6.2% 0.10
‘ally’ 3.3% 0.21 ‘hate’ 1.9% 0.31
VBD	the	NN	. 2.3% 0.21 ‘	hat’ 2.0% 0.31
START	RB 3.1% 0.21 ‘ated’ 3.0% 0.19
‘ved ‘ 4.1% 0.19 ‘turn' 1.6% 0.17
‘	tim’ 2.6% 0.18 ‘hrew’ 1.2% 0.16
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(Mostafazadeh et	al.,	2016) (Salle	et	al.,	2016)

Conclusions
• For	this	task,	language	models	are	useful	only	in	the	PMI	setting

• A	style-aware	model	achieves	72.4%	accuracy	on	the	task,	
without	considering	the	story	prefix

• A	joint	model	yield	best	performing	results	on	the	task:	75.2%

Freq.	
≥	5%


