Automatic Selection of Context Configurations for Improved Class-Specific Word Representations

> Ivan Vulić, **Roy Schwartz**, Ari Rappoport, Roi Reichart and Anna Korhonen



CoNLL 2017; Vancouver; August 3, 2017

#### Background

Distributional Semantics: What is a Context?

# The nice people rode their horses bravely and rapidly

#### Background

Distributional Semantics: What is a Context?



# The nice people rode their horses bravely and rapidly

- Bag-of-words: simplest approach
  - Noisy



- Bag-of-words: simplest approach
  - Noisy
- Dependency links: more accurate contexts
  - Are all dependency links useful for representing words?
  - Different dependency links represent different word classes

# Background

Distributional Semantics: What is a Context?

Coordinations / Symmetric Patterns



The nice people rode their horses bravely and rapidly

- Bag-of-words: simplest approach
  - Noisy
- Dependency links: more accurate contexts
  - ► Are all dependency links useful for representing words?
  - Different dependency links represent different word classes
- Coordinations / symmetric patterns: more accurate and more efficient





- Bag-of-words: simplest approach
  - Noisy
- Dependency links: more accurate contexts
  - ► Are all dependency links useful for representing words?
  - Different dependency links represent different word classes
- Coordinations / symmetric patterns: more accurate and more efficient
  - But... valuable information gets lost

# **Main Contributions**

- Detect which fine-grained context types are useful for different word classes
- Traverse the large space of context configurations efficiently to find the best context configuration
- Transfer the configurations learned for one task and one language to other tasks and languages without re-training

# **Context Types**

(Universal) Labeled Dependency Edges



- (discovers, scientist\_nsubj)
- (discovers, stars\_dobj)
- (discovers, telescope\_nmod)
- (stars, discovers\_dobj-1)

# **Context Types**

(Universal) Labeled Dependency Edges



- (discovers, scientist\_nsubj)
- (discovers, stars\_dobj)
- (discovers, telescope\_nmod)
- (stars, discovers\_dobj-1)

#### **Cross Lingual Context Transfer?**



# **Results: Individual Labels**



# **Too many Context Configurations**

| Adjectives | Verbs           | Nouns                        |
|------------|-----------------|------------------------------|
| amod,      | prep, acl,      | amod, prep, comp, subj, obj, |
| conjlr,    | obj, comp, adv, | appos, acl, nmod, conjlr,    |
| conjll     | conjlr, conjll  | conjll                       |

Traversing a potentially huge context configuration may be intractable

#### Searching for Context Configurations

An Adapted Beam-Search Algorithm





f(x) : dev set evaluation







#### **Experimental Setup**

- Model: Skip-gram with negative sampling [Mikolov et al., 2013]
- Training data: Polyglot Wikipedia
- ▶ Evaluation: SimLex-999 word similarity dataset [Hill et al., 2015]
  - ▶ 666 noun pairs, 222 verb pairs, 111 adjective pairs
  - 2-fold cross validation
  - Evaluation measure: Spearman's  $\rho$
- **Baselines:** A variety of standard context types
  - Bag-of-words (w/ and w/o positions); all dependency links, coordination dependency links, symmetric patterns

# **Results: Context Configurations**



#### Selected Contexts are Efficient



#### **Transfer Results**

#### TOEFL

▶ 5% improvement over strongest baseline on verbs and nouns

- Other languages
  - $\blacktriangleright$  0.02—0.08  $\rho$  improvement on Italian and German accros all three word classes
    - DE and IT SimLex999 [Leviant and Reichart, 2015]

#### **Take-Home Messages**

- Different word classes require different (finer-grained) context configurations
- An automatic framework for computationally tractable selection of optimal context configurations
- Design based on Universal Dependencies: context configurations transferable to other tasks and languages without retraining
- ► Future work → finer-grained contexts, other word classes, more sophisticated search algorithms, other representation models, context weighting, ...

#### **Take-Home Messages**

- Different word classes require different (finer-grained) context configurations
- An automatic framework for computationally tractable selection of optimal context configurations
- Design based on Universal Dependencies: context configurations transferable to other tasks and languages without retraining
- ► Future work → finer-grained contexts, other word classes, more sophisticated search algorithms, other representation models, context weighting, ...

# Thank you!

# References I



#### Hill, F., Reichart, R., and Korhonen, A. (2015).

Simlex-999: Evaluating semantic models with (genuine) similarity estimation. *Computational Linguistics.* 



#### Leviant, I. and Reichart, R. (2015).

Judgment language matters: Multilingual vector space models for judgment language aware lexical semantics.

arxiv:1508.00106.



Levy, O. and Goldberg, Y. (2014).

Dependency-based word embeddings. In *Proc. of ACL*.



Lin, D. (1998).

Automatic retrieval and clustering of similar words. In *Proc. of ACL*.



Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013). Efficient estimation of word representations in vector space. arXiv:1301.3781.



Schwartz, R., Reichart, R., and Rappoport, A. (2015). Symmetric pattern based word embeddings for improved word similarity prediction.

In Proc. of CoNLL.

#### References II



Schwartz, R., Reichart, R., and Rappoport, A. (2016).

Symmetric patterns and coordinations: Fast and enhanced representations of verbs and adjectives. In *Proc. of NAACL*.